首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Responses were recorded from 130 single neurones in the primary auditory cortex of 12 ketamine-anaesthetized cats in response to double-click stimuli, to a /ba/-/pa/ phoneme continuum and to gaps inserted early (after 5 ms) and late (after 500 ms) in a 1 s duration noiseburst. Stimulus levels were between 45 and 75 dB SPL. Neural detection threshold for the 'late gap' was less than 5 ms. For the double click and 'early gap' stimuli thresholds were between 40 and 50 ms, whereas the phoneme continuum threshold for voice-onset-time (VOT) was between 10 and 25 ms. The 'late gap' and VOT thresholds are similar to psychophysical gap detection and the /ba/-/pa/ categorical perception boundary respectively.  相似文献   

2.
Infrequent "deviant' auditory stimuli embedded in a homogeneous sequence of "standard' sounds evoke a neuromagnetic mismatch field (MMF), which is assumed to reflect automatic change detection in the brain. We investigated whether MMFs would reveal hemispheric differences in cortical auditory processing. Seven healthy adults were studied with a whole-scalp neuromagnetometer. The sound sequence, delivered to one ear at time, contained three infrequent deviants (differing from standards in duration, frequency, or interstimulus interval) intermixed with standard tones. MMFs peaked 9-34 msec earlier in the right than in the left hemisphere, irrespective of the stimulated ear. Whereas deviants activated only one MMF source in the left hemisphere, two temporally overlapping but spatially separate sources, one in the temporal lobe and another in the inferior parietal cortex, were necessary to explain the right-hemisphere MMFs. We suggest that the bilateral MMF components originating in the supratemporal cortex are feature specific whereas the right-hemisphere parietal component reflects more global auditory change detection. The results imply hemispheric differences in sound processing and suggest stronger involvement of the right than the left hemisphere in change detection.  相似文献   

3.
The sensation of a single sound event can be altered by subsequent sounds. This study searched for neural mechanisms of such retroactive effects in macaque auditory cortex by comparing neural responses to single tones with responses to two consecutive tones. Retroactive influences were found to affect late parts of the response to a tone, which comprised 53/134 of the recordings of action potentials and 88/131 of the recordings of field potentials performed in primary, caudal, and medial auditory fields. If before or during the occurrence of the late response to the first tone a second tone was presented the late response was suppressed. Suppression of late cortical responses parallels perceptual phenomena like backward recognition masking, suggesting that suppression of late responses provides a neural correlate of auditory backward effects.  相似文献   

4.
Recording the activity of several neurons in parallel in the frontal cortex of behaving monkeys reveals that firing times of neurons can maintain +/- 1 ms accuracy even after delays of over 400 ms. The accurate firing structures were associated with behavior. Neural networks that can sustain such accuracy can learn 'learn' to bind with each other and thus may serve as building blocks for cognitive processes.  相似文献   

5.
Aspiration, but not neurotoxic, lesions of the amygdala impair performance on a visual discrimination learning task in which an auditory secondary reinforcer signals which of 2 stimuli will be reinforced with food. Because aspiration lesions of the amygdala interrupt projections of the rhinal cortex traveling close to the amygdala, it was hypothesized that damage to the rhinal cortex would severely impair learning in this task. Rhesus monkeys (Macaca mulatta) were trained to solve visual discrimination problems based on an auditory secondary reinforcer, were given lesions of the rhinal cortex or the perirhinal cortex alone, and were then retested. The monkeys displayed a reliable, albeit mild, deficit in postoperative performance. It is concluded that the aspiration lesions of the amygdala that produced a severe impairment did so because they interrupted connections of temporal cortical fields beyond the rhinal cortex that are also involved in learning in this task. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Evidence from anatomical tracer studies as well as lesions of the primary auditory cortex (AI) indicate that the principal relay nucleus of the auditory thalamus, the ventral part of the medial geniculate (MGv), projects in parallel to AI and the rostral area on the supratemporal plane of the macaque monkey. The caudomedial area, by contrast, receives input from MGv only indirectly via AI, and neurons in this area are often tuned to the spatial location of a complex sound. The belt areas on the lateral surface of the superior temporal gyrus receive input from the primary areas. Neurons in these areas respond better to more complex stimuli, such as band-pass noise pulses of frequency-modulated sweeps, than to pure tones. Often neurons in the lateral belt respond well to species-specific communication calls. The hypothesis is put forward that the central auditory pathways in the macaque monkey are organized into parallel streams, similar to the visual system, one for the processing of spatial information, the other for the processing of auditory "patterns". Evidence from neuroimaging studies in humans with MRI and PET are consistent with this hypothesis. Virtual auditory space stimuli lead to selective activation of an inferior parietal region, whereas speech-like stimuli activate superior temporal regions.  相似文献   

7.
Conclusions The effect of secondary recrystallization and coarsening of the structure in annealing of hot pressed manganese-zinc ferrites may be used for substantially increasing their initial magnetic permeability.Using type MM2 industrial iron oxide containing impurities, by selection of the appropriate hot pressing and annealing conditions it is possible to obtain ferrite cores with a record value of initial magnetic permeability at the level of 30,000 units.Translated from Poroshkovaya Metallurgiya, No. 2(290), pp. 71–74, February, 1987.  相似文献   

8.
We evaluated two hypothetical codes for sound-source location in the auditory cortex. The topographical code assumed that single neurons are selective for particular locations and that sound-source locations are coded by the cortical location of small populations of maximally activated neurons. The distributed code assumed that the responses of individual neurons can carry information about locations throughout 360 degrees of azimuth and that accurate sound localization derives from information that is distributed across large populations of such panoramic neurons. We recorded from single units in the anterior ectosylvian sulcus area (area AES) and in area A2 of alpha-chloralose-anesthetized cats. Results obtained in the two areas were essentially equivalent. Noise bursts were presented from loudspeakers spaced in 20 degrees intervals of azimuth throughout 360 degrees of the horizontal plane. Spike counts of the majority of units were modulated >50% by changes in sound-source azimuth. Nevertheless, sound-source locations that produced greater than half-maximal spike counts often spanned >180 degrees of azimuth. The spatial selectivity of units tended to broaden and, often, to shift in azimuth as sound pressure levels (SPLs) were increased to a moderate level. We sometimes saw systematic changes in spatial tuning along segments of electrode tracks as long as 1.5 mm but such progressions were not evident at higher sound levels. Moderate-level sounds presented anywhere in the contralateral hemifield produced greater than half-maximal activation of nearly all units. These results are not consistent with the hypothesis of a topographic code. We used an artificial-neural-network algorithm to recognize spike patterns and, thereby, infer the locations of sound sources. Network input consisted of spike density functions formed by averages of responses to eight stimulus repetitions. Information carried in the responses of single units permitted reasonable estimates of sound-source locations throughout 360 degrees of azimuth. The most accurate units exhibited median errors in localization of <25 degrees, meaning that the network output fell within 25 degrees of the correct location on half of the trials. Spike patterns tended to vary with stimulus SPL, but level-invariant features of patterns permitted estimates of locations of sound sources that varied through 20-dB ranges. Sound localization based on spike patterns that preserved details of spike timing consistently was more accurate than localization based on spike counts alone. These results support the hypothesis that sound-source locations are represented by a distributed code and that individual neurons are, in effect, panoramic localizers.  相似文献   

9.
A neuromagnetic study in tinnitus patients and normal-hearing controls was performed with a modified contingent negative variation (CNV) paradigm. While the warning stimulus S1 was a tone burst at an intensity well above threshold, the imperative stimulus S2 was presented at a near threshold intensity because, in the majority of cases, the perceived loudness of tinnitus is very close to the threshold for a pure tone of the same frequency. Subjects had to respond to S2 by pressing a button until its offset was detected. In this case, instead of the usual sudden cut-off of the CNV after the perception of S2, a slow negative deflection develops, the post-imperative negative variation (PINV). Its initial portion probably indicates the development of a second initial CNV because the subject had to attend also to the offset of S2. The neuromagnetic data were analysed both in the time domain and in the frequency domain (short-time spectral analysis of the classical EEG bands). The time domain waveform as well as the spectrotemporal patterns of the MEG bands exhibited deviations from the normal pattern in several tinnitus subgroups, depending on the characteristics of tinnitus (tonal vs. noisiform, monaural vs. binaural) and on the stimulation conditions (tinnitus side vs. non-tinnitus side).  相似文献   

10.
"Physiological memory" is enduring neuronal change sufficiently specific to represent learned information. It transcends both sensory traces that are detailed but transient and long-term physiological plasticities that are insufficiently specific to actually represent cardinal details of an experience. The specificity of most physiological plasticities has not been comprehensively studied. We adopted receptive field analysis from sensory physiology to seek physiological memory in the primary auditory cortex of adult guinea pigs. Receptive fields for acoustic frequency were determined before and at various retention intervals after a learning experience, typified by single-tone delay classical conditioning, e.g., 30 trials of tone-shock pairing. Subjects rapidly (5-10 trials) acquire behavioral fear conditioned responses, indexing acquisition of an association between the conditioned and the unconditioned stimuli. Such stimulus-stimulus association produces receptive field plasticity in which responses to the conditioned stimulus frequency are increased in contrast to responses to other frequencies which are decreased, resulting in a shift of tuning toward or to the frequency of the conditioned stimulus. This receptive field plasticity is associative, highly specific, acquired within a few trials, and retained indefinitely (tested to 8 weeks). It thus meets criteria for "physiological memory." The acquired importance of the conditioned stimulus is thought to be represented by the increase in tuning to this stimulus during learning, both within cells and across the primary auditory cortex. Further, receptive field plasticity develops in several tasks, one-tone and two-tone discriminative classical and instrumental conditioning (habituation produces a frequency-specific decrease in the receptive field), suggesting it as a general process for representing the acquired meaning of a signal stimulus. We have proposed a two-stage model involving convergence of the conditioned and unconditioned stimuli in the magnocellular medial geniculate of the thalamus followed by activation of the nucleus basalis, which in turn releases acetylcholine that engages muscarinic receptors in the auditory cortex. This model is supported by several recent findings. For example, tone paired with NB stimulation induces associative, specific receptive field plasticity of at least a 24-h duration. We propose that physiological memory in auditory cortex is not "procedural" memory, i.e., is not tied to any behavioral conditioned response, but can be used flexibly.  相似文献   

11.
In a series of experiments on New World and Old World monkeys, architectonic features of auditory cortex were related to tone frequency maps and patterns of connections to generate and evaluate theories of cortical organization. The results suggest that cortical processing of auditory information involves a number of functionally distinct fields that can be broadly grouped into four or more levels of processing. At the first level, there are three primary-like areas, each with a discrete pattern of tonotopic organization, koniocortical histological features, and direct inputs from the ventral division of the medial geniculate complex. These three core areas are interconnected and project to a narrow surrounding belt of perhaps seven areas which receive thalamic input from the major divisions of the medial geniculate complex, the suprageniculate/limitans complex, and the medial pulvinar. The belt areas connect with a lateral parabelt region of two or more fields that are almost devoid of direct connections with the core and the ventral division of the medial geniculate complex. The parabelt fields connect with more distant cortex in the superior temporal gyrus, superior temporal sulcus, and prefrontal cortex. The results indicate that auditory processing involves 15 or more cortical areas, each of which is interconnected with a number of other fields, especially adjoining fields of the same level.  相似文献   

12.
We have previously shown by coculturing myoblasts and macrophages that myotube formation is strongly increased in vitro by the presence of an acid stable, heat-labile, soluble growth factor(s) secreted by macrophages. In this paper we obtained macrophages from peritoneal washing which also contained limited amounts of other cells such as lymphocytes and mesothelial cells. We here demonstrate that an ED2-positive (ED2+) macrophage subpopulation is responsible for myoblast enhanced proliferation. ED2+ macrophages were separated by a magnetic-activated cell sorter (MACS) using a monoclonal antibody against ED2, a membrane antigen peculiar to macrophages. Both ED2+ macrophages and their conditioned medium increased myotube formation when added to primary muscle cultures. Furthermore we demonstrate that muscle growth induced by macrophages is mainly the consequence of an increased myoblast proliferation by showing the presence of an increased number of MyoD-positive (MyoD+) myonuclei.  相似文献   

13.
Typical antipsychotic drugs, such as haloperidol and chlorpromazine, increase synthesis of the neuropeptide neurotensin (NT) in both the striatum and the nucleus accumbens, whereas atypical antipsychotic drugs, such as clozapine and olanzapine, do so only in the nucleus accumbens. By using in vivo microdialysis, we now report that acute administration of haloperidol, clozapine, or olanzapine failed to alter the release of NT in either the striatum or nucleus accumbens. In contrast, chronic administration of haloperidol for 21 days increased NT release in both the striatum and nucleus accumbens, whereas treatment for 21 days with the atypical antipsychotic drugs, clozapine or olanzapine, increased NT release selectively in the nucleus accumbens. These findings suggest that (i) increased NT mRNA expression and NT tissue concentrations are associated with increases in the extracellular fluid concentrations of the peptide and (ii) atypical antipsychotic drugs may exert their therapeutic effects and produce fewer side effects by virtue of their selectivity in limbic compared with striatal, target neurons.  相似文献   

14.
Cells in the cat primary auditory cortex (A1) were investigated to see whether they could integrate sound signals over time. A1 cells responded well to frequency-modulated sweeps. When a portion of the sweep was replaced by silence the response was weakened considerably. However, the response strength was restored when the silent portion was replaced by a burst of band noise, even though the cells did not respond to the burst of noise alone. These results indicate that A1 cells do not respond simply to instantaneous characteristics of acoustic stimuli but respond to those integrated over time.  相似文献   

15.
The auditory afterimage is a sensation which occurs for several seconds after the exciting acoustic signal has been switched off, and which roughly corresponds to the inverse of the spectrum of the exciting signal. In contrast to the well-known visual afterimage, the physiological mechanism generating the auditory afterimage has been questionable so far. Neuromagnetic source imaging revealed that the source of cortical neural activity which coincides with the sensation of the afterimage is located in the auditory cortex and exhibits a tonotopic organization similar to that of the sustained response which occurs during continuous presentation of an acoustic stimulus. It is concluded that the neural processes leading to the generation of the two phenomena -sustained response and auditory afterimage - are similar.  相似文献   

16.
17.
The mammalian auditory cortex contains multiple fields but their functional role is poorly understood. Here we examine the responses of single neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized cats to frequency-modulated (FM) sweeps. FM sweeps traversed the excitatory response area of the neuron under study, and FM direction and the linear rate of change of frequency (RCF) were varied systematically. In some neurons, sweeps of different sound pressure levels (SPLs) also were tested. The response magnitude (number of spikes corrected for spontaneous activity) of nearly all field P neurons varied with RCF. RCF response functions displayed a variety of shapes, but most functions were of low-pass characteristic or peaked at rather low RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass or nonselective RCF response function characteristics) all displayed spike count-SPL functions to tone burst onsets that were monotonic or weakly nonmonotonic. RCF response functions and best RCFs often changed with SPL. For most neurons, FM directional sensitivity, quantified by a directional sensitivity (DS) index, also varied with RCF and SPL, but the mean and width of the distribution of DS indices across all neurons was independent of RCF. Analysis of response timing revealed that the phasic response of a neuron is triggered when the instantaneous frequency of the sweep reaches a particular value, the effective Fi. For a given neuron, values of effective Fi were independent of RCF, but depended on FM direction and SPL and were associated closely with the boundaries of the neuron's frequency versus amplitude response area. The standard deviation (SD) of the latency of the first spike of the response decreased with RCF. When SD was expressed relative to the rate of change of stimulus frequency, the resulting index of frequency jitter increased with RCF and did so rather uniformly in all neurons and largely independent of SPL. These properties suggest that many FM parameters are represented by, and may be encoded in, orderly temporal patterns across different neurons in addition to the strength of responses. When compared with neurons in primary and anterior auditory fields, field P neurons respond better to relatively slow FMs. Together with previous studies of responses to modulations of amplitude, such as tone onsets, our findings suggest more generally that field P may be best suited for processing signals that vary relatively slowly over time.  相似文献   

18.
Ampullary electroreceptor organs of the catfish were apically exposed to 0.3 mM vincristine in order to investigate the part played by the microtubular system in stimulus transduction. The main effects were repetitive firing of the afferent fibre, a reduction of the mean spontaneous activity and a reduction of the spike amplitude two to four days after exposure to vincristine. The mean sensitivity was less susceptible to vincristine than the spontaneous activity. Since the shape of the frequency curves remained unchanged and similar effects as described above were also observed after denervation, we conclude that vincristine most likely does not affect electroreceptor cell functioning, but causes degeneration of the afferent fibre.  相似文献   

19.
20.
In the present study, we determined connections of three newly defined regions of auditory cortex with regions of the frontal lobe, and how two of these regions in the frontal lobe interconnect and connect to other portions of frontal cortex and the temporal lobe in macaque monkeys. We conceptualize auditory cortex as including a core of primary areas, a surrounding belt of auditory areas, a lateral parabelt of two divisions, and adjoining regions of temporal cortex with parabelt connections. Injections of several different fluorescent tracers and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were placed in caudal (CPB) and rostral (RPB) divisions of the parabelt, and in cortex of the superior temporal gyrus rostral to the parabelt with parabelt connections (STGr). Injections were also placed in two regions of the frontal lobe that were labeled by a parabelt injection in the same case. The results lead to several major conclusions. First, CPB injections label many neurons in dorsal prearcuate cortex in the region of the frontal eye field and neurons in dorsal prefrontal cortex of the principal sulcus, but few or no neurons in orbitofrontal cortex. Fine-grain label in these same regions as a result of a WGA-HRP injection suggests that the connections are reciprocal. Second, RPB injections label overlapping prearcuate and principal sulcus locations, as well as more rostral cortex of the principal sulcus, and several locations in orbitofrontal cortex. Third, STGr injections label locations in orbitofrontal cortex, some of which overlap those of RPB injections, but not prearcuate or principal sulcus locations. Fourth, injections in prearcuate and principal sulcus locations labeled by a CPB injection labeled neurons in CPB and RPB, with little involvement of the auditory belt and no involvement of the core. In addition, the results indicated that the two frontal lobe regions are densely interconnected. They also connect with largely separate regions of the frontal pole and more medial premotor and dorsal prefrontal cortex, but not with the extensive orbitofrontal region which has RPB and STGr connections. The results suggest that both RPB and CPB provide the major auditory connections with the region related to directing eye movements towards stimuli of interest, and the dorsal prefrontal cortex for working memory. Other auditory connections to these regions of the frontal lobe appear to be minor. RPB has connections with orbitofrontal cortex, important in psychosocial and emotional functions, while STGr primarily connects with orbital and polar prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号