首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用大孔吸附树脂纯化樟树叶醇提液中木脂素类化合物。通过对比6种大孔树脂对樟树叶中木脂素吸附-解吸效果,从中筛选一种最适大孔吸附树脂作为纯化材料,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响,以及洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交试验优化大孔树脂纯化木脂素的工艺。试验结果表明,大孔树脂最佳吸附-解吸工艺条件为:7BV上样量、2.12mg/mL上样浓度、1.0 mL/min上样速率、80%乙醇洗脱剂、洗脱流速2BV/h,洗脱剂用量8BV,该条件下樟树叶中木脂素得率为66.68%,纯度为15.91%,表明该大孔树脂对于樟树叶中木脂素纯化效果较好。  相似文献   

2.
利用7种大孔树脂对酸枣仁的总黄酮进行纯化,依据其吸附能力及解吸能力,选出最佳的大孔树脂型号,研究了上样液浓度、上样速度、上样液体积对大孔树脂吸附率的影响以及洗脱剂类型、洗脱剂浓度、洗脱速度、洗脱剂体积对大孔树脂解吸率的影响,采用正交试验对酸枣仁总黄酮的纯化工艺进行了优化。试验结果表明,DM301大孔树脂纯化酸枣仁总黄酮效果最佳,在上样液浓度为0.1 mg/mL、上样速度为1 BV/h、上样液体积为30 mL、洗脱剂为丙酮、洗脱剂浓度为100%、洗脱速度为2 BV/h、洗脱剂体积为55 mL的条件下,获得的酸枣仁总黄酮纯度最高,相较于纯化前提高了约1.1倍。  相似文献   

3.
目的:为探索适宜分离和纯化桑白皮多糖的大孔树脂,研究其最佳纯化工艺参数。方法:通过静态吸附-洗脱试验对十种不同型号大孔树脂(H103、HP20、AB-8、X-5、D-101、DM301、DA-201、NKA-9、HPD-722、HPD300)的吸附量、吸附率及解吸率进行考察,优选最佳纯化树脂,并研究了上样液pH、上样质量浓度、上样速度、洗脱剂体积分数、洗脱剂用量及洗脱流速对其纯化工艺的影响,确定最佳纯化工艺参数。结果:D-101型为最优树脂,最佳上样条件为:pH=3.0、上样浓度为4.0 mg/mL、上样速度为2.0 BV/h;最佳洗脱条件为:75%的乙醇洗脱液、洗脱剂用量为3.5 BV、流速为1.0 BV/h。经过该工艺纯化后,桑白皮中多糖的纯度由16.12%±1.20%提高到了74.45%±1.15%。结论:D-101型大孔树脂能够很好的富集、纯化桑白皮中的多糖,为更高效的利用桑白皮资源提供了理论依据。  相似文献   

4.
确定艾草总黄酮初步分离纯化的最佳工艺条件及抗氧化活性。比较6种大孔吸附树脂的静态吸附和解吸附效果,确定最佳吸附树脂并考察其上样液浓度、上样液pH值、吸附温度、上样速度、洗脱流速、洗脱用量对艾草总黄酮吸附及解析附性能的影响。结果表明:AB-8大孔吸附树脂的综合效果最佳,其最佳工艺条件为:上样液浓度为2.5 mg/mL,上样液pH值为4,吸附温度为20℃,上样速度为1.5 mL/min,选用80%乙醇进行洗脱,洗脱流速为1.5 mL/min,洗脱剂用量为100 mL。在此吸附和解吸条件下,艾草总黄酮的纯度由36.1%上升至75.43%,纯度提高了近2倍,纯化效果良好。抗氧化试验结果表明:艾草总黄酮具有一定的抗氧化活性,是一种潜在的天然抗氧化剂。  相似文献   

5.
目的:以葛根为原料,采用大孔树脂法分离纯化葛根多糖,研究其抗氧化性质。方法:通过对葛根多糖吸附及解吸筛选出最优树脂,分析吸附解吸时间、样液浓度、样液pH以及乙醇的体积分数对多糖纯化的影响,在静态分析条件下再运用层析柱法进行动态纯化,对纯化后的葛根多糖进行抗氧化分析。结果:D101树脂分离纯化效果较好,其对葛根多糖静态吸附和解吸最佳工艺条件吸附时间为8 h,解吸时间为3 h,吸附浓度0.75 mg/mL,样液pH6.0,乙醇解吸体积分数为60%,其对动态吸附和解吸最佳工艺条件为上样液质量浓度1.0 mg/mL,解吸剂体积(60%乙醇)51 mL,在此条件下纯化的葛根多糖纯度达到55.34%。经纯化后的葛根多糖对DPPH·和·OH具有较强的清除作用,最大清除率分别为81.74%和85.11%。结论:大孔树脂法纯化葛根多糖工艺条件合理,且纯化效果好,杂质去除率高,纯化后的葛根多糖抗氧化性得到提高。  相似文献   

6.
筛选纯化菊苣总苷的最佳树脂,并研究大孔树脂对总苷的纯化工艺。通过静态吸附及解吸试验、筛选出纯化菊苣总苷的大孔树脂类型,确定HPD300大孔树脂为最佳纯化树脂,进一步研究吸附等温线和吸附动力学模型,并通过动态吸附和解吸的单因素试验确定最佳纯化工艺条件。结果表明, HPD300大孔树脂对菊苣总苷的吸附和解吸性能良好,其吸附等温线方程符合Langmuir模型,吸附量随着温度的升高而减小,吸附过程符合准一级动力学方程。HPD 300大孔吸附树脂最佳纯化工艺条件为:上样液质量浓度3.0 mg/mL,吸附流速2.0 mL/min,最大上样量26m L/g树脂,洗脱流速2.0 mL/min,洗脱剂采用50%的乙醇溶液30 mL,在此条件下菊苣总苷纯化的平均收率为75.79%,纯度为74.17%。  相似文献   

7.
大孔树脂纯化黑果腺肋花楸多酚的工艺优化   总被引:2,自引:0,他引:2  
以黑果腺肋花楸为原料,采用大孔树脂纯化黑果腺肋花楸中多酚类物质。通过对比6 种大孔树脂对黑果腺肋花楸多酚吸附-解吸效果,筛选出XAD-7大孔树脂作为最佳纯化材料,并通过单因素试验确定XAD-7大孔树脂纯化黑果腺肋花楸多酚的静态吸附-解吸最佳工艺条件为:吸附时间4 h、解吸时间2 h、上样液质量浓度3.6 mg/mL、上样液pH 4、乙醇体积分数95%、乙醇溶液pH 7;其对黑果腺肋花楸多酚动态吸附-解吸最佳工艺条件为:上样流速2 mL/min、上样量560 mL、蒸馏水洗脱用量350 mL、洗脱流速2 mL/min、洗脱体积300 mL。在此条件下,黑果腺肋花楸多酚纯度由11.62%提高到64.37%,表明XAD-7大孔树脂对于黑果腺肋花楸多酚具有较好的纯化效果。  相似文献   

8.
探索大孔树脂对信阳绿茶中多糖的最佳纯化条件。通过对八种不同型号大孔树脂的吸附量、吸附率及解析率进行考察,优选最佳纯化树脂。AB-8型为最优树脂,最佳上样条件为:pH=1.0、上样浓度为5mg/mL、上样速度为2.0BV/h;最佳洗脱条件为:70%的乙醇洗脱液、洗脱剂用量为3.0BV、流速为1.0BV/h。经过该工艺纯化后,绿茶中多糖的纯度由10.6%提高到了64.3%。得出AB-8型大孔树脂能够很好的富集、纯化绿茶中的多糖,为更高效的利用绿茶资源提供了理论依据。  相似文献   

9.
通过考察多种大孔树脂的解吸和吸附动力学,筛选出最佳的纯化姜黄素的大孔树脂,并研究上样浓度、上样流速、上样体积对大孔树脂吸附率的影响和洗脱剂浓度、洗脱流速、洗脱剂用量对大孔树脂解吸率的影响,通过正交实验优化大孔树脂纯化姜黄素的工艺。实验结果表明:DA201大孔树脂对姜黄素吸附能力较大,并且解吸性能好,确定纯化姜黄素的最佳工艺条件:上样浓度为382mg/L,上样流速为1mL/min,上样液体积为75mL,此时姜黄素吸附率为70.64%;洗脱剂浓度为90%的乙醇,洗脱流速为3mL/min,洗脱剂用量为70mL,此时姜黄素解吸率为71.06%。经纯化后,姜黄素的纯度可以达到80.25%。  相似文献   

10.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

11.
大孔树脂分离纯化黄姜中薯蓣皂苷工艺研究   总被引:2,自引:0,他引:2  
罗仓学  杨转萍  李祥 《食品科技》2011,(5):229-232,236
通过对5种大孔树脂的对比研究,筛选出一种对黄姜中薯蓣皂苷吸附性能与洗脱性能最佳的树脂,并确定了树脂纯化薯蓣皂苷的最佳工艺参数。利用超声波-协同表面活性剂萃取得到皂苷粗提液,利用分光光度法测定样品中薯蓣皂苷的含量,考察上样浓度、吸附流速、洗脱剂浓度、洗脱量、洗脱流速、树脂重复使用次数等条件对吸附与洗脱结果的影响。结果表明D101大孔树脂对黄姜中薯蓣皂苷的纯化效果较好。其最佳工艺条件为上样浓度为粗提液浓度,吸附流速为1BV/h,洗脱剂用量为50mL,洗脱剂浓度为70%的乙醇,洗脱流速为3BV/h,大孔树脂重复利用次数最佳为4次,薯蓣皂苷的纯度和收率分别可达到40%和94.02%。该工艺简单可行,精制效果好,适用于工业化生产。  相似文献   

12.
《食品与发酵工业》2014,(5):135-141
研究大孔吸附树脂对苹果多酚的纯化工艺。从6种大孔树脂中筛选出吸附性能和解吸性能良好的XAD7HP型大孔吸附树脂。在单因素试验基础上,设计正交实验,对大孔树脂纯化苹果多酚工艺进行优化。结果表明:最佳纯化条件为上样浓度1.46 mg/mL、上样pH值5.50、上样速度1.25 mL/min,洗脱剂种类为丙酮、洗脱剂浓度为90%、洗脱速度为1 mL/min。在此条件下,纯化后纯度高达80.1%,比纯化前提高了10倍多,且回收率高达90%。纯化后苹果多酚进行高效液相色谱分析,大部分杂质峰不再出现,检测出5种多酚成分。  相似文献   

13.
采用膜分离与大孔树脂联用技术纯化茶皂素。粗茶皂素经陶瓷膜和360Da纳滤膜初步分离浓缩,得率为62.1%,纯度为79%;根据静态和动态吸附筛选试验,选择大孔树脂AmberliteXAD7HP对茶皂素进一步纯化,通过单因素试验,确定最佳工艺参数为:上样流速0.5 mL/min、上样液浓度30mg/mL;以10%,40%,70%的乙醇溶液进行梯度洗脱,洗脱剂流速1mL/min,洗脱液体积为3BV,该条件下纯化,茶皂素最终得率为55.3%,纯度可达95%。该试验表明膜分离与大孔树脂联用技术可得到高纯度的茶皂素,是一种可工业化推广的方法。  相似文献   

14.
张玉  李进  吕海英  张侠  张花丽 《食品科学》2015,36(12):22-28
为纯化准噶尔山楂残渣中的粗多糖,通过动态吸附和洗脱实验从7 种大孔吸附树脂中选出两种最优树脂NKA-9和D101,按一定比例进行混合实验。在单因素试验基础上,利用响应面法确定最佳纯化条件:NKA-9与D101树脂最佳混合质量比为2∶3;最佳吸附工艺条件为上样液流速3.75 mL/min、上样液质量浓度1.32 g/L、树脂径高比1∶13,此条件下多糖的吸附率为60.75%;最佳洗脱工艺条件为洗脱液浓度0.27 mol/L、洗脱液流速3.5 mL/min、洗脱液用量7 BV,此条件下多糖的洗脱率为84.22%。样品中多糖含量由原来的5.06%上升至21.13%。  相似文献   

15.
研究AB-8大孔树脂法去除车前草粗多糖中蛋白质的适宜条件。采用动态吸附和解析实验对树脂纯化工艺进行优化。结果表明适宜工艺条件为:上样液浓度40mg/mL,上样流速0.5 mL/min,上样液pH值7.0;以蒸馏水为洗脱剂,洗脱速度2 mL/min,洗脱体积2.5BV(1BV=20 mL)。纯化后AB-8大孔吸附树脂对车前草粗多糖中的蛋白具有较高的去除效果,蛋白去除率为84.83%,多糖保留率为88.32%。  相似文献   

16.
主要研究了大孔树脂分离纯化枳实橙皮苷工艺。以枳实橙皮苷纯度为指标,通过响应面分析法确定大孔树脂分离纯化枳实橙皮苷最佳工艺条件,即吸附流速8 BV/h,上样液浓度0.7 g/mL,洗脱流速5 BV/h,乙醇质量分数83%。  相似文献   

17.
XAD-7型大孔树脂纯化黑果腺肋花楸多酚条件优化   总被引:1,自引:0,他引:1  
对XAD-7型大孔吸附树脂纯化黑果腺肋花楸多酚的条件进行研究。以没食子酸为标准品,采用Folin-Phenol法测定黑果腺肋花楸多酚的含量,通过静态和动态吸附-解吸试验,考察了上样液浓度和pH值、上样流速、上样量、洗脱剂体积分数和pH值、洗脱流速、洗脱体积等因素对多酚吸附率和解吸率的影响。结果表明:XAD-7型大孔树脂静态吸附黑果腺肋花楸多酚的工艺条件为:上样液质量浓度2.67 mg/mL,上样液pH值4.0,吸附时间2 h;静态解吸工艺条件为:洗脱剂乙醇体积分数95%,pH值7.0,解吸时间1 h。黑果腺肋花楸多酚的动态吸附-解吸工艺条件为:上样量430 mL,上样流速1 mL/min,洗脱体积210 mL,洗脱流速1 mL/min。通过动态吸附-解吸后,黑果腺肋花楸多酚粗提物的纯度由9.56%提高到74.26%,表明XAD-7型大孔树脂法是纯化黑果腺肋花楸多酚的有效方法。  相似文献   

18.
大孔吸附树脂纯化无花果总多糖工艺   总被引:2,自引:0,他引:2  
研究大孔树脂分离纯化无花果总多糖工艺.以树脂的吸附率和解吸率作为评价指标,讨论影响总多糖分离纯化的几个条件,结果显示:AB-8树脂具有较好的吸附能力,最佳柱纯化条件:吸附液pH值为8.0、洗脱流速为1 mL/min、洗脱剂浓度为0.01 g/L.将洗脱液浓缩,真空干燥即得高纯度无花果总多糖纯度达90%以上,为纯化无花果多糖的一种好方法.  相似文献   

19.
目的筛选纯化桑叶黄酮的最佳树脂,并优化纯化工艺,提高桑叶黄酮产品纯度。方法利用静态吸附试验确定最佳树脂,分别研究上样流速、上样浓度、洗脱剂等对黄酮损失率及纯度的影响。结果 XDA-8大孔吸附树脂对黄酮吸附效果最好,最佳纯化条件:上料浓度0.9 mg/m L,流速2 BV/h,50%乙醇洗脱。利用上述工艺连续纯化5批,桑叶黄酮收率90%以上,产品纯度保持在50%以上,灰分1%以下。结论利用XDA-8大孔树脂纯化桑叶黄酮,工艺稳定,操作简单,利于工业化生产。  相似文献   

20.
以紫薯为原材料,采用超声波辅助法提取紫薯果胶多糖,大孔吸附树脂纯化,以吸附率、解吸率和多糖保留率为评价指标,从7种大孔树脂中筛选出D296R为较优树脂,在单因素试验基础上,采用L_9(3~4)正交设计优化。结果表明,上样液质量浓度2.0 mg/mL,上样液pH 2.0进行吸附,吸附饱和平衡后,用70%乙醇溶液洗脱,洗脱流速2.0 mL/min,洗脱液体积5 BV为较佳工艺。在此条件下紫薯果胶多糖纯度从20.7%提高到61.5%,表明大孔树脂D296R对紫薯果胶多糖具有较好的纯化效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号