首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As a part of abating the formaldehyde emission (FE) of urea–formaldehyde (UF) resin, this study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermal curing behavior of UF resins and properties of PB bonded with them. UF resins synthesized at different F/U mole ratios (i.e., 1.6, 1.4, 1.2, and 1.0) were used for the manufacture of PB. Thermal curing behavior of these UF resins was characterized using differential scanning calorimetry (DSC). As the F/U mole ratio decreases, the gel time, onset and peak temperatures, and heat of reaction (ΔH) increased, while the activation energy (Ea) and rate constant (k) were decreased. The amount of free formaldehyde of UF resin and FE of PB prepared decreased in parallel with decreasing the F/U mole ratio. The internal bond strength, thickness swelling, and water absorption of PB was slightly deteriorated with decreasing the F/U mole ratio of UF resins used. These results indicated that as the F/U mole ratio decreased, the FE of PB was greatly reduced at the expense of the reactivity of UF resin and slight deterioration of performance of PB prepared. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1787–1792, 2006  相似文献   

2.
In this work, betaine (trimethyl glycine) and tannin (complex biomolecules of polyphenolic nature) were used as bio-fillers. Urea-formaldehyde (UF) resin with a molar ratio of formaldehyde versus urea (FA/U) of 0.8 was synthesized in situ with tannin and betaine as bio-fillers, to obtain UF resin with reduced free FA content and increased hydrolytic and thermal stability by the principles of sustainability. The samples TUF (with tannin) and BUF (with betaine) were characterized by using X-ray diffraction analysis (XRD), non-isothermal thermogravimetric analysis (TGA), and differential thermal analysis (DTA), supported by data from Fourier Transform Infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The percentage of free FA in modified BUF resin is 0.1%, while the percentage of free FA in tannin-modified resin is 0.8%. The hydrolytic stability of the modified UF resins was determined by measuring the concentration of liberated FA in the modified UF resins, after acid hydrolysis. The modified BUF resin is hydrolytically more stable because the content of released FA is 3.6% compared to the modified TUF resin, where it was 7.4%. Based on the value for T5%, the more thermally stable resin is the modified TUF resin (T5% = 123.1°C), while the value of the T5% for the BUF resin is 83.1°C. This work showed how UF bio-composite with reduced free FA content and increased hydrolytic and thermal stability can be obtained using tannin and betaine as bio-fillers.  相似文献   

3.
The purpose of this study was to investigate the effects of reaction pH conditions on thermal behavior of urea–formaldehyde (UF) resins, for the possible reduction of formaldehyde emission of particleboard bonded with them. Thermal curing properties of UF resins, synthesized at three different reaction pH conditions, such as alkaline (pH 7.5), weak acid (pH 4.5), and strong acid (pH 1.0), were characterized with multiheating rate method of differential scanning calorimetry. As heating rate increased, the onset and peak temperatures increased for all three UF resins. By contrast, the heat of reaction (ΔH) was not much changed with increasing heating rates. The activation energy (Ea) increased as the reaction pH decreased from alkaline to strong acid condition. The formaldehyde emission of particleboard was the lowest for the UF resins prepared under strong acid, whereas it showed the poorest bond strength. These results indicated that thermal curing behavior was related to chemical species, affecting the formaldehyde emission, while the poor bond strength was believed to be related to the molecular mobility of the resin used. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 422–427, 2006  相似文献   

4.
Summary: The effects of bio‐scavengers on the formaldehyde emission, bonding strength, curing behavior, and thermal decomposition properties of MF resins for engineered flooring and adhesion for wood were investigated. Four varieties of bio‐scavengers, tannin powder, wheat flour, rice husk flour, and charcoal, were added to MF resin at 5 wt.‐%. To determine formaldehyde emission and bonding strength, we manufactured engineered floorings. MF‐charcoal was most effective in reducing formaldehyde emission because of its porous nature, but its bonding strength was decreased. Tannin powder and wheat flour, which contain more hydroxyl groups, showed higher bonding strength and curing degree than pure MF resin did. Although the hydroxyl groups of the bio‐scavengers were effective in reducing formaldehyde emission and improve bonding strength and curing degree, rice husk flour and charcoal behaved like inorganic substances, thereby disturbing the adhesion between MF resin and wood and thus reducing the bonding strength. In thermogravimetric analysis, MF‐tannin showed the highest thermal stability in the low‐temperature range from 100 to 300 °C.

Storage modulus (E′) of MF resin with various bio‐scavengers at a heating rate of 10 °C · min?1.  相似文献   


5.
In this study, the time–temperature– transformation (TTT) cure diagrams of the curing processes of several novolac resins were determined. Each diagram corresponded to a mixture of commercial phenol–formaldehyde novolac, lignin–phenol–formaldehyde novolac, and methylolated lignin–phenol–formaldehyde novolac resins with hexamethylenetetramine as a curing agent. Thermomechanical analysis and differential scanning calorimetry techniques were applied to study the resin gelation and the kinetics of the curing process to obtain the isoconversional curves. The temperature at which the material gelled and vitrified [the glass‐transition temperature at the gel point (gelTg)], the glass‐transition temperature of the uncured material (without crosslinking; Tg0), and the glass‐transition temperature with full crosslinking were also obtained. On the basis of the measured of conversion degree at gelation, the approximate glass‐transition temperature/conversion relationship, and the thermokinetic results of the curing process of the resins, TTT cure diagrams of the novolac samples were constructed. The TTT diagrams showed that the lignin–novolac and methylolated lignin–novolac resins presented lower Tg0 and gelTg values than the commercial resin. The TTT diagram is a suitable tool for understanding novolac resin behavior during the isothermal curing process. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
为了降低脲醛树脂的游离甲醛含量及其胶接制品的甲醛释放量,本研究在脲醛树脂合成过程中加入改性剂代替部分甲醛,通过尿素-甲醛-改性剂发生共缩聚反应,合成了改性脲醛树脂。研究了改性剂取代甲醛的摩尔比对改性脲醛树脂固化速度、游离甲醛含量的影响,以及在不同的热压条件下,对胶接胶合板的胶合强度和甲醛释放量的影响。研究结果表明,改性剂的加入不仅能有效降低改性脲醛树脂的游离甲醛含量及其胶合板的甲醛释放量,还能提高胶合板的胶合强度和耐水性。  相似文献   

7.
The thermal behavior of pre-curing urea–formaldehyde (UF) resin with different solid content was investigated by different scanning calorimetry (DSC), and the activation energies (Ea) in different pre-curing stage of UF resin were also analyzed by Kissinger method. The results indicated that with pre-curing degree increasing, the DSC curves of pre-curing UF resin shifted to lower temperature, and both the onset and peak temperature decreased. The pre-curing process of UF resin included two stages: In the first stage, the Ea and Z value decreased obviously due to the activity of component increased with water evaporation, and then, these two values increased in the second stage due to pre-curing degree increased even partial resin was cured.  相似文献   

8.
改性脲醛树脂的合成及性能   总被引:2,自引:0,他引:2       下载免费PDF全文
洪晓东  孙超  牛鑫  梁兵 《化工进展》2013,32(4):848-852
采用传统方法合成了脲醛树脂,得出甲醛与尿素的最佳摩尔比为2。采用不同改性剂合成了改性脲醛树脂,得出:随三聚氰胺、聚乙烯醇复合改性剂用量的增加,树脂的游离甲醛含量、固化时间呈逐渐下降趋势,当复合改性剂用量为8%时树脂性能最佳,压缩强度为9.0 MPa;苯酚改性剂的最佳用量为10%,材料的压缩强度为14.2 MPa;糠醛改性剂的最佳用量为15%,材料的压缩强度为19.5 MPa;综合比较,三聚氰胺、聚乙烯醇复合改性剂可以明显降低游离甲醛的含量和固化时间,但材料的压缩强度增加不大,而采用糠醛改性剂制得改性脲醛树脂的压缩强度较大。  相似文献   

9.
Phenol formaldehyde reaction solution (PFS) was used to synthesize urea–formaldehyde resins (PFSUF resins) with low formaldehyde content. In addition, the prepared PFSUF resins were used as adhesives to bond bamboo particleboards. Mechanical properties, fracture morphology, water absorption ratio, and dimensional stability of bamboo particleboards have been studied by tensile tests, SEM tests, water absorption analysis, and swelling ratio analysis, respectively. The results demonstrate that the main ingredient of PFS is phenol formaldehyde intermediate 2,4,6‐trimethylolphenate and proper amount of PFS can be used to reduce the formaldehyde content of UF resins effectively. The results also show that bamboo particleboards bonded with PFSUF resins exhibit better mechanical properties, water resistance, and dimensional stability than that bonded with pure UF resin. However, the results of TG and mechanical properties analysis exhibit that alternative curing agents to ammonium chloride should be studied to improve the curing properties of the PFSUF resins with low formaldehyde content. Taken together, this work provides a method of preparing environment‐friendly PFSUF resins with low phenol and low formaldehyde content and the prepared resins have potential application in wood industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42280.  相似文献   

10.
Urea-formaldehyde (UF) resin with excellent intrinsic flame retardancy, high strength, and low cost has been widely used as adhesives, coatings as well as molding compounds, and it is a challenge to prepare UF resin with combined properties of high toughness/strength and low formaldehyde emissions. In this work, glutaraldehyde was introduced into the synthesis system of UF resin to partially replace formaldehyde, and urea-glutaraldehyde-formaldehyde (UGF) copolycondensation resin was prepared. It was found that glutaraldehyde participated in additional/condensation reactions of UF resin, and the crosslinking reaction of UGF resin was hindered with higher curing activation energy than that of neat UF resin. Due to the controllable curing kinetics and introduction of long methylene chains, UGF resin presented relatively low crosslinking density, and under external force, it underwent distinct yielding before fracture and many yield folds appeared on the fractured surface, showing high toughness and strength. Compared with neat UF resin, the tensile strength, elongation at break, impact strength, and critical stress intensity factor (KIC) of UGF resin increased by 26%, 42.30%, 14.6%, and 30%, respectively. Meanwhile, the free formaldehyde emission for UGF resin decreased by 47.5%, meeting the requirement of E0 grade. Such developed eco-friendly UGF resin exhibited promising application potentials.  相似文献   

11.
In the present paper, the effect of glyoxal on the gel formation within the adhesive systems based on urea-formaldehyde (UF) resins is shown. A reduction of formaldehyde content in wood-based panels by decreasing the formaldehyde/urea molar ratio in the UF resins leads to increasing of the UF resin gel time, and impairing the qualitative characteristics of the UF-based wood materials. Glyoxal is shown to speed up the crosslinking of the macromolecules as well as significant reduction of gel time of adhesive composition. The first reason is the result of reaction between glyoxal and ammonium ion leading to protons releasing. Another reason is that glyoxal and its interaction products react with macromolecules of the UF resin forming a three-dimension cross-linked structure. The gel time and the pot life of the UF resin are measured by the oscillatory viscometer. Formation of the UF cross-linked resin structure with glyoxal and a curing catalyst (ammonium sulfate) is studied using dispersion Raman scattering spectroscopy. Particleboards (PB) are produced using different amount of glyoxal and formaldehyde/urea molar ratio in the UF resin. The properties are evaluated according to the European Standards and include density, internal bond, thickness swelling moisture content and formaldehyde content.  相似文献   

12.
The work reported demonstrates that the yellowness of UV‐curable epoxide resins can be improved by adding certain tertiary amines in appropriately determined amounts. According to the results of our experiments, 2.0 wt% benzoyl peroxide added to a resin effectively enhances the crosslinking density, and phenolic free radicals are produced during UV curing, which consequently induce yellowness via the reaction of oxygen and the free radicals. Imidazole (1‐amine) and tertiary amines, including 1,2‐dimethylimidazole (2‐amine), 2,4,6‐tris(dimethylaminomethyl)phenol (3‐amine), 1‐methylimidazole (4‐amine) and 2‐methylimidazole (5‐amine), were chosen to be added to resins, and their effects on UV conversion and yellowness were investigated. According to the experimental results, tertiary amines in the resin can provide a certain degree of improvement in yellowness index (ΔYI) and color parameter (ΔE*ab) of the resin sample. Whatever the type of tertiary amine, it is found that the optimum content of amine in resin is 1.0 wt%. Also, among the studied amines, the 3‐amine exhibits the highest UV reactivity and the best efficiency for yellowness improvement with values of Δa*, Δb*, ΔYI and ΔE*ab as low as ? 1.4, 6.23, 11.27 and 6.48, respectively. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
The incorporation of the modified starch (MS) in urea‐formaldehyde resins at different stage of the synthesis was studied in this article. The synthesized resins were characterized by Fourier transform infrared spectroscopy, indicating that the ester bond can be introduced into the UF structure after the addition of MS. The curing reactions were examined with differential scanning calorimetry and it reveals that curing temperature of UF resin are slightly shifted to higher temperatures. To study the bonding strength and formaldehyde emission of the bonded plywood, the addition method and amount of MS are systematically investigated. The performance of the UF resins is remarkably improved by the addition of MS around 15% (weight percentage of the total resin) in the second stage. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40202.  相似文献   

14.
The characteristics of urea–formaldehyde (UF) resin curing in the presence of wood extracts and a catalyst [ammonium chloride (NH4Cl)] were investigated by differential scanning calorimetry (DSC). The effects of extracts from 16 wood species on resin curing behaviors were evaluated. A model developed in this study, Tp = 53.296 exp(?9.72C) + 93.104, could be used to predict the resin curing rate in terms of the DSC peak temperature (Tp) as influenced by the NH4Cl content (C). The results indicated that the curing rate of UF resin increased as the catalyst content increased and reached a maximum when the catalyst content ranged from 0.5 to 1.0% (solid basis over liquid UF resin weight). Further increases in the catalyst content had no effect on the resin curing rate. The curing rates of UF resin in the presence of wood extracts increased with decreased pH values or increased base buffer capacities. It was also discovered that the activation energy could not fully explain the resin curing behavior when some species of wood extracts were present, and therefore, the pre‐exponential factor had to be taken into account. The concept of the equivalent catalyst content (ECC) of wood extracts to the NH4Cl content was introduced in this study; ECCs ranged from 0.0022 to 0.0331% among the 16 wood species. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
We conducted a feasibility study on the pultrusion of a glass‐fiber‐reinforced urea–formaldehyde (UF) composite using a proprietary method. The UF prepolymer synthesized in this study was prepared from blends of UF monomer and a curing agent (NH4Cl).The process feasibility, kinetic analysis, and dynamic mechanical properties of the glass‐fiber‐reinforced UF composites by pultrusion were investigated. From investigations of the long pot life of the UF prepolymer, the high reactivity of the UF prepolymer, and excellent fiber wet‐out, we found that the UF resin showed excellent process feasibility for pultrusion. A kinetic model, dα/dt = A exp(?E/RTm(1 ? α)n, is proposed to describe the curing behavior of a UF resin. Kinetic parameters for the model were obtained from dynamic differential scanning calorimetry scans with a multiple‐regression technique. The dynamic storage modulus of the pultruded‐glass‐fiber‐reinforced UF composites increased with increasing die temperature, filler content and glass‐fiber content and with decreasing pulling rate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1242–1251, 2002  相似文献   

16.
A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine‐bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized by condensation at pH 1.0 (UF‐1.0), pH 4.5 (UF‐4.5), and pH 5.0 (UF‐5.0) were fabricated. The addition of MAR to UF‐4.5 and UF‐5.0 for bonding hardwood plywood enhanced the bonding strength and reduced formaldehyde emission. For UF‐1.0, the addition of MAR adversely affected the bonding strength. However, the UF‐1.0 resin yielded the lowest formaldehyde emission of all of the UF resins in the study. The effects of the MAR addition were related to the molecular structures of the UF resins. UF‐1.0 contained a large amount of free urea, a considerable number of urons, and a highly methylene‐linked, ring‐structured higher molecular weight fraction and had a smaller number of methylol groups. Therefore, the addition of MAR was considered to cause a shortage of the methylol groups, which in turn, led to incomplete resin curing. In contrast to UF‐1.0, UF‐5.0 contained a smaller amount of free urea and a linearly structured higher molecular weight fraction and had a larger number of methylol groups. In this case, MAR was considered to effectively react with the methylol groups to develop a three‐dimensional crosslinked polymer network to enhance the bonding strength and suppress the generation of free formaldehyde to reduce formaldehyde emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Multiwalled carbon nanotubes (MWCNTs) were subjected to modification by urea to use as formaldehyde scavenger in urea formaldehyde (UF) adhesive and reducing the free formaldehyde emission of the medium density fiberboards (MDFs). Morphological differences besides elemental analysis was investigated using field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy. The effect of urea impregnated MWCNTs filler on the physical, morphological and thermal properties of the UF resin has investigated. Furthermore, characterization of the mechanical properties, free formaldehyde emission and thickness swelling were carried out for the MDF panels. From the results, the free formaldehyde of the UF resins was significantly decreased. The lowest free formaldehyde was belonged to the sample with 3 wt% of scavenger which was about 71% lower than the value for neat UF resin. Accordingly, the formaldehyde emission of the fiberboards was also showed a descending trend by incorporation of MWCNTs-U to the composite structure. It was decreased from 9.67 to 3.89 mg/100 g dried board. These results indicated that the prepared nano modifier was successfully performed as a formaldehyde scavenger for the UF resin and could prevent the hazards of the free formaldehyde emission from MDF panels.  相似文献   

18.
Phenol–urea–formaldehyde cocondensed (PUF) resins of high urea content were prepared by adding different forms of urea to the reaction system. The structure, curing behavior, and water resistance of the PUF resins were investigated, and their relations were also discussed by liquid 13C nuclear magnetic resonance (NMR) and different scanning calorimetry (DSC). The liquid 13C-NMR analysis showed that urea added in the form of methylolureas was well incorporated into the cocondensed resins by reacting with phenolic methylols to form cocondensed methylene bridges, and that the PUF resins had no free formaldehyde with any form. Unreacted urea and low molecule monosubstituted urea of PUF resins play a dominant role in the curing behavior and water resistance of resins. The peak temperature, curing time, and curing enthalpy (ΔH) value correspondingly increased, however, the water resistance of PUF resins decreased when urea content in PUF resins increased. The PUF cocondensed resin with up to 89.4 % (W U/W P) urea has relatively low cost, and moreover can pass the requirements of China Industry Standard for the exterior grade of structural plywood after 4-h cyclic boiling test.  相似文献   

19.
尤戎(Uron)树脂及其用法对脲醛树脂性能的影响   总被引:2,自引:0,他引:2  
以不同工艺制备了三种含尤戎结构的脲醛树脂(Uron树脂),通过其与普通脲醛树脂的混合制得多种混合脲醛树脂。研究了Uron树脂及其使用方法对降低脲醛树脂胶粘剂游离甲醛含量及胶接胶合板甲醛释放量的作用与效果。结果表明:1)三种不同摩尔比的Uron树脂对脲醛树脂游离甲醛含量及胶接胶合板甲醛释放量都有明显的降低作用,游离甲醛含量最多可降低43%,甲醛释放量最多可降低61%;2)Uron树脂的添加量在10%-20%时对胶合强度的提高有利,强度最大可提高29%;3)低摩尔比Uron树脂对脲醛树脂的改性效果优于高摩尔比Uron树脂。  相似文献   

20.
茶叶废料在脲醛树脂中的应用研究   总被引:2,自引:0,他引:2  
将不同颗粒度的茶叶废料粉添加到脲醛树脂胶中,研究了茶叶废料的颗粒度、加入量等对脲醛树脂胶黏剂的游离甲醛含量、黏接胶合板的甲醛释放量及胶合强度的影响。实验结果表明,茶叶废料作为填料添加到脲醛树脂胶黏剂中,能够降低其游离甲醛含量以及其黏接胶合板的甲醛释放量;茶叶废料颗粒度越小,与脲醛树脂混合性越好,消除甲醛效果越显著;茶叶废料的适量加入不会降低胶合板胶合强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号