首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
研究了天然橡胶/丁腈橡胶(NR/NBR)两相共混比对共混胶阻尼材料硫化特性、力学性能、压缩生热以及阻尼性能的影响。结果表明:随着NBR含量增加,共混胶M_L、M_H、M_H-M_L均增大,t_(s1)和t_(c90)先缩短后延长;共混胶拉伸强度、拉断伸长率、定伸应力和撕裂强度均减小,硬度有所增大,回弹性明显下降;压缩永久变形和温升明显增大;滞后能量损耗(HED)和阻尼系数增大。DMA曲线上表现出两个明显的损耗峰,随着NBR含量增加,NR相峰值tanδ_(max1)下降而NBR相损耗峰值tanδ_(max2)逐渐增大,损耗模量的变化趋势与之相似。NBR/NBR=70/30时,共混胶力学性能相比纯NR下降程度低,且室温附近的阻尼性能提高明显,综合性能相比其他更佳。  相似文献   

2.
研究了多壁碳纳米管(MWCNT)的用量对天然橡胶(NR)/丁腈橡胶(NBR)共混胶的硫化特性、力学性能及阻尼性能的影响。结果表明,随着MWCNT用量的增加,NR/NBR共混胶的最小转矩、最大转矩、最大转矩与最小转矩之差均增大,焦烧时间和正硫化时间缩短;扯断伸长率逐渐减小,撕裂强度、定伸应力和邵尔A硬度逐渐增大,回弹性下降,拉伸强度先增大后减小,当MWCNT用量为4.0份时拉伸强度达到最大值。拉伸/压缩-恢复过程中的滞后能量密度和阻尼系数增大。  相似文献   

3.
研究了有机蒙脱土(OMMT)对天然橡胶/丁腈橡胶(NR/NBR)阻尼材料硫化特性、力学性能及阻尼性能的影响。结果表明:随着OMMT添加量增大,共混胶M_L、M_H和M_H-M_L增大,t_(s1)和t_(c90)逐渐缩短;拉伸强度、撕裂强度先增大后减小,OMMT为4份时最佳,拉断伸长率降低,定伸应力和硬度增大,回弹性下降;滞后能量密度(HED)和阻尼系数增大。DMA测试表明,NR相损耗峰值略有减小,而NBR相损耗峰值逐渐增大,两相损耗模量E"先增大后减小,在OMMT为4份最大。  相似文献   

4.
考察了均匀剂RH-150对天然橡胶(NR)/丁腈橡胶(NBR)共混胶硫化特性、物理机械性能、压缩生热及阻尼性能的影响。结果表明,随着均匀剂RH-150用量的增加,NR/NBR混炼胶的加工性能和操作安全性逐渐提高,拉伸强度和撕裂强度均先提高后降低,分别在RH-150用量为5份和8份时达到最大值,同时定伸应力和回弹性逐渐减小,扯断伸长率、疲劳温升和动态压缩永久变形均增大,阻尼性能提高。  相似文献   

5.
为了探索天然橡胶/丁腈橡胶的阻尼性能,研究了短切碳纤维(CF)对天然橡胶/丁腈橡胶(NR/NBR)阻尼材料硫化特性、力学性能及阻尼性能的影响。结果表明:随着CF添加量增大,共混胶ML、MH和MH-ML增大,ts1缩短而tc90略有延长;拉伸强度和拉断伸长率下降,撕裂强度先增大后减小,当CF为10份时达到最大值,定伸应力明显增大,回弹性下降;滞后能量密度(HED)和阻尼系数增大;DMA测试表明:NR和NBR两相损耗因子(tanδ)峰值均略有下降,损耗模量E'显著增大,室温及较高温度下的tanδ随CF添加量增大而逐渐增大。可以看出,CF的加入能有效增强NR/NBR共混胶的阻尼性能。  相似文献   

6.
考察了橡胶合金SG-301对天然橡胶(NR)/丁腈橡胶(NBR)共混胶硫化特性、物理机械性能、压缩生热以及阻尼性能的影响。结果表明,随着SG-301用量的增加,NR/NBR共混胶的最小转矩、最大转矩及转矩差值均逐渐增大,焦烧时间和正硫化时间基本没有变化,拉伸强度、撕裂强度和扯断伸长率均先增大后减小,当SG-301用量为5份时达到最大值,同时,100%定伸应力、300%定伸应力、邵尔A硬度、压缩永久变形和疲劳温升均逐渐增大,回弹性逐渐下降,且两相的损耗峰逐渐靠近,损耗因子峰值均逐渐减小,损耗模量逐渐增大,室温以上温度时的损耗因子逐渐增大。  相似文献   

7.
研究天然鳞片石墨(FG)对天然橡胶(NR)/丁腈橡胶(NBR)并用胶阻尼材料性能的影响。结果表明:随着FG用量增大,NR/NBR并用胶的交联密度提高,硫化速率降低;硬度和定伸应力提高,拉伸强度和撕裂强度先提高后降低,当FG用量为10份时拉伸强度和撕裂强度最高;拉伸/压缩-恢复过程中的滞后能量密度和阻尼系数增大,NR相的损耗因子(tanδ)最大值增大,NBR相的tanδ最大值减小,两相的损耗模量均增大,阻尼性能明显提高。  相似文献   

8.
研究了在NBR/ACM共混胶中,使用半有效硫磺硫化体系条件下,促进剂CZ/TMTD并用量对NBR/ACM共混胶性能的影响。测试了不同CZ/TMTD并用量下NBR/ACM共混胶的硫化特性、力学性能及耐老化性能。结果表明,随着TMTD用量增大、CZ用量的减小,NBR/ACM共混胶硫化程度逐渐增大、硫化速度加快,但焦烧时间迅速减小,加工安全性变差;共混硫化胶扯断伸长率逐渐降低,硬度、拉断强度及100%定伸强度均先升高后降低;共混硫化胶耐热空气、热油老化性能均升高。  相似文献   

9.
研究了EVA(乙烯-醋酸乙烯共聚物)对天然橡胶(NR)/丁腈橡胶(NBR)并用胶硫化特性、力学性能、阻尼性能、压缩生热的影响。结果表明:随着EVA含量的增多,NR/NBR并用胶的硫化速度先升后降;拉伸强度降低,撕裂强度则先增加后下降,硬度增加,回弹性降低;NR/NBR并用胶在拉伸/压缩-恢复过程中的HED和HLE均先减少后增大; DMA谱图中NR与NBR相损耗峰均移向低温,有效阻尼温域拓宽;压缩永久变形和疲劳温升增加。  相似文献   

10.
采用过氧化二异丙苯(DCP)作主交联剂、三烯丙基异氰脲酸酯(TAIC)作助交联剂硫化丁腈橡胶/聚氯乙烯(NBR/PVC)共混胶以制备汽车油管胶料,研究了TAIC用量对胶料的硫化特性、压缩永久变形、力学性能、耐溶剂性能、耐热老化性能以及耐臭氧老化性能的影响。结果表明,随着TAIC用量的增加,共混胶料的正硫化时间逐渐缩短,硫化速率逐渐加快,交联效率提高,最大转矩增加;同时共混胶的硬度和拉伸强度逐渐增大,扯断伸长率减小,其压缩永久变形、耐溶剂、耐热老化以及耐臭氧老化性能则呈现不同的变化。当DCP用量为3.5份、TAIC用量为3份时,NBR/PVC共混硫化胶的综合性能最好。  相似文献   

11.
研究了天然鳞片石墨(FG)对天然橡胶/丁腈橡胶(NR/NBR)阻尼材料包括阻尼性能在内的综合性能的影响。结果表明:随着FG添加量由0份增加至15份,共混胶ML、MH、MH-ML均逐渐增大,焦烧时间ts1和工艺正硫化时间tc90变化不大。共混胶拉伸强度、撕裂强度先增加后减小,在FG添加量为10份时达到最大值,定伸应力和硬度明显增大,拉断伸长率和回弹性略有下降。滞后能量密度(HED)和阻尼系数增大。DMA表明,NR相损耗因子峰值逐渐减小,而NBR相损耗峰值逐渐增大,损耗模量E’’明显增大。  相似文献   

12.
研究环氧化天然橡胶(ENR-40)对天然橡胶(NR)/丁腈橡胶(NBR)阻尼材料综合性能的影响。结果表明:随着ENR-40用量的增大,并用胶的最大转矩、最小转矩及两者之差增大,焦烧时间和正硫化时间略延长;拉伸强度和拉断伸长率先增大后略有减小,撕裂强度和定伸应力逐渐增大,硬度不变,回弹值略有减小;压缩永久变形和疲劳温升逐渐减小,滞后能量密度和阻尼系数增大;DMA测试结果显示,两相损耗峰靠近,NR的损耗因子峰值和损耗模量减小,NBR的损耗因子峰值和损耗模量增大。  相似文献   

13.
研究了硫化剂DCP(过氧化二异丙苯)用量对丁腈橡胶(NBR)/乙烯-醋酸乙烯酯橡胶(EVM)共混胶的硫化特性、两相交联密度、物理力学性能以及热空气老化性能的影响。结果表明,随着硫化剂DCP用量的增大,NBR/EVM共混胶的硫化速度和交联密度逐渐增大。与老化前相比,经热空气老化后硫化胶的交联密度增大,经125℃热空气老化后硫化胶的交联密度增大速率逐渐变大,且在DCP用量为1.5份时老化后的硫化胶交联密度增大一倍多。随着硫化剂DCP用量的增大,NBR/EVM硫化胶中NBR相的交联密度逐渐增大、EVM相的交联密度微降,在DCP用量为1.5份时两相交联密度相差最大。与老化前相比,经过热空气老化后硫化胶中NBR相的交联密度明显增大,EVM相的交联密度则变化不大。随着硫化剂DCP用量的增大,NBR/EVM硫化胶的拉伸强度基本保持不变,硬度和100%定伸应力均逐渐增大,拉断伸长率和压缩永久变形均逐渐减小。与老化前相比,经70℃、100℃热空气老化后硫化胶的硬度、拉伸强度、100%定伸应力均增大,而拉断伸长率基本保持不变。经125℃热空气老化后硫化胶的100%定伸应力明显变大,拉伸强度和拉断伸长率均明显减小。  相似文献   

14.
基于天然橡胶/丁腈橡胶(NR/NBR)存在不连续的两个高、低温阻尼温域区,给定NR/NBR的质量比为70/30,采用氯丁橡胶(CR)对其进行了阻尼改性研究。通过拉伸/压缩循环、动态力学损耗和压缩生热对改性效果进行了表征,并考察了CR用量对NR/NBR硫化特性和力学性能的影响。结果表明,随着CR用量的增加,NR/NBR拉伸/压缩循环过程的滞后能量密度(HED)和滞后能量损失效率(HELE)均增加,且提高幅度在压缩循环过程中更为明显,表明体系的阻尼性能提高、且在压缩形变时更有效。30份CR使NR/NBR的波谷区域明显提升,改善了其在-43~0℃的阻尼性能,同时也使并用胶在压缩生热实验中的永久变形增大、最终温升显著提高。此外,CR使NR/NBR硫化胶的焦烧时间和硫化时间缩短、交联程度下降、拉伸和撕裂强度以及断裂伸长率下降、200%定伸应力稍增加。  相似文献   

15.
张明霞  罗权焜 《弹性体》2010,20(2):51-55
探究了共混比对丙烯酸酯橡胶/丁腈橡胶(ACM/NBR)共混胶的硫化特性、力学性能、耐热老化性能、耐油性能、高温压缩永久变形性能和低温性能的影响。研究表明,采用TCY/S/促进剂的硫化体系时,在ACM中并用少量的NBR可以显著地提高硫化速度,最高扭矩也随着NBR用量的增加而增加,并用5 phr NBR后,共混硫化胶的拉伸强度与纯ACM硫化胶相比,提高了近17%,但NBR的并用量由5 phr增加到25 phr时,硫化胶的力学性能变化不大。随着NBR用量增加,共混硫化胶的耐热老化性能和耐油性能均变差,但高温压缩永久变形减小,耐寒性有较大改善。  相似文献   

16.
研究了DCP/TAIC并用比对NBR/EVM并用胶硫化特性、物理机械性能和热空气老化性能的影响。结果表明,随着TAIC用量的增大,NBR/EVM硫化胶的拉伸强度和100%定伸应力均逐渐增大,压缩永久变形性能逐渐变好;在TAIC用量为0.4份时,其耐热空气老化性能最差。随着DCP用量的增大,NBR/EVM并用胶的硫化速率和交联密度均逐渐增大,其硫化胶的硬度、100%定伸应力和拉伸强度先增大后减小,扯断伸长率逐渐减小,压缩永久变形性能逐渐变好;耐热空气老化性能基本不变。综合分析,在DCP/TAIC并用比为1.4/0.7左右时,NBR/EVM并用胶的性能最好。  相似文献   

17.
张秀娥  鲍刚  苗珍珍  邹惠芳 《橡胶科技》2019,17(3):0164-0167
研究助交联剂HVA-2用量对过氧化物硫化氯磺化聚乙烯胶管胶料性能的影响。结果表明:随着助交联剂HVA-2用量增大,混炼胶的F_(max)增大,t_(10)变化不大,t_(90)缩短,交联密度增大;硫化胶的硬度和拉伸强度增大,拉断伸长率减小,压缩永久变形减小;老化后,硫化胶的硬度和拉伸强度增大,拉断伸长率减小,且变化幅度随着HVA-2用量增大而减小;油浸泡后,硫化胶的体积减小,且体积变化率随着助交联剂HVA-2用量增大而减小;当助交联剂HVA-2用量为2份时,硫化胶的综合性能较好。  相似文献   

18.
研究了增黏型酚醛树脂(PF)用量对天然橡胶/丁腈橡胶共混阻尼材料的硫化特性、力学性能、压缩生热以及阻尼性能的影响。结果表明,随着PF用量由0增加至10份(质量),天然橡胶/丁腈橡胶共混胶的最小和最大转矩及转矩差均减小,焦烧时间和正硫化时间延长;拉伸强度和定伸应力减小,扯断伸长率和撕裂强度增大,回弹性显著下降;疲劳温升和动态压缩永久变形增大;滞后能量密度和阻尼系数逐渐增大。动态力学分析结果表明,共混后两相的损耗因子峰值均略有下降,但两相的玻璃化转变区域都明显向高温方向移动,共混胶损耗模量峰也向高温方向移动且峰值略有增大,室温附近的阻尼性能明显增强。  相似文献   

19.
在过氧化物硫化剂DCP作用下,研究了NBR/EVM(EVM800 HV和EVM500 HV)共混比对硫化胶硫化特性、物理机械性能、热空气老化性能和热油老化性能的影响。结果表明,NBR/EVM硫化胶的交联密度随EVM用量增大而逐渐减小。对于NBR/EVM800 HV硫化胶,EVM800 HV用量不超过20份时,其拉伸强度基本不变,在EVM800 HV用量为20~40份时,其拉伸强度随EVM800 HV用量增大逐渐增大,由11.7 MPa增大至15 MPa,明显高于NBR/EVM500 HV硫化胶以及纯NBR硫化胶;100%定伸应力随EVM用量增大而逐渐增大,且NBR/EVM800 HV硫化胶增大更加显著,同时其100%定伸应力高于NBR/EVM500 HV硫化胶。并用EVM之后,NBR/EVM硫化胶的热空气稳定性变好。随着EVM500 HV用量的增大,NBR/EVM500 HV硫化胶的耐油性能逐渐变差;随着EVM800 HV用量的增大,NBR/EVM800 HV硫化胶的耐油性能逐渐变好,且优于NBR/EVM500 HV硫化胶。  相似文献   

20.
考察了炭黑种类对丙烯酸酯橡胶(ACM)/乙烯丙烯酸酯橡胶(AEM)共混胶硫化特性、物理机械性能、耐油性能、动态力学性能及热稳定性等的影响。结果表明,与未加入炭黑的试样相比,加入不同种类炭黑后共混胶的最大转矩(M_H)、最小转矩(M_L)及二者之差(M_H-M_L)均显著增大,焦烧时间(t_(10))和正硫化时间(t_(90))均缩短。共混硫化胶的物理机械性能、耐油性能及热稳定性均显著增强,但压缩永久变形变差,玻璃化转变温度均升高,损耗因子峰值均下降。随着炭黑粒径的增大,共混胶的M_H、M_L和M_H-M_L逐渐减小,t_(10)和t_(90)逐渐延长,物理机械性能逐渐变差,但热稳定性及压缩永久变形逐渐升高。加入炭黑N 990的共混硫化胶的热稳定性较差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号