首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A theoretical model is presented to calculate the lubricant film thickness in an unsteady hydrodynamic lubrication of cup-shaped products to be formed by the ironing process. The model covers the development of hydrodynamic lubrication in various phases of the ironing process. The model provides equations for estimating the lubricant film thickness for each phase. Experiments were conducted to study the effect of lubricant viscosity on die expansion and punch force in making cup-shaped products by the ironing process. It was found that the die expansion varied between unlubricated and lubricated cups and depended on the lubricant viscosity. The film thickness was estimated from the difference between the increased die/punch clearance, which was calculated from the expansion, and the lubricated cup wall thickness. The theoretical film thickness was compared with the estimated film thickness based on the die expansion measurement.  相似文献   

2.
An experimental study of the shape and thickness of the oil film during rolling in a thrust ball bearing has been carried out by the interference method.The experimental results showed good agreement with theory. Oil film thickness was affected mainly by the rolling velocity, viscosity of oil and maximum Hertzian stress. The groove radius had no effect on the film thickness. With increase of rolling velocity the film thickness increases and then reduces sharply owing to temperature rise and the non-Newtonian properties of the lubricant. A qualitative similarity was derived from the experimentally observed dimensionless shapes of the film and of the dimensionless theoretical shapes of the oil film for the lubricant in the non-Newtonian state. The flat “squashed” contact area diminished and disappeared with rise in velocity, which agreed with theoretical predictions.Good agreement was found between the theoretical and the experimental values of the oil film thickness and the friction coefficients for a ball sliding on a plane. Values of relaxation time for oil agree with values observed by the vibration method.The interference method is proposed to estimate the relation of the relaxation time for lubricants to the pressure and temperature up to maximum Hertzian pressures of 14,000 kg/cm2. Experimental studies by the interference method and the solution of the non-isothermal hydrodynamic contact problem for liquids both in the Newtonian and non-Newtonian state provide a method of calculation of the friction coefficient.  相似文献   

3.
引入孙立成提出的齐斯霍姆常数c的计算式,利用齐斯霍姆两相流压降计算方法得到了油气润滑工况下的水平管内油气环状流压降沿管路轴向分布的整体趋势;并利用Fluent仿真平台得到了油气环状流在不同工况下的压降和液膜沿管路轴向分布的均匀特性。研究结果表明,压力降和液膜厚度的仿真结果与理论计算值有一定吻合度;随着气相速度的增大,压力降和液膜厚度的波动性越来越大,该结果为油气润滑运输中油液的预测及控制提供了依据。  相似文献   

4.
倾角对面接触润滑油膜厚度影响的实验测量   总被引:2,自引:0,他引:2  
在全膜润滑和有限供油润滑条件下,利用面接触润滑油膜测量系统对不同滑块倾角下的油膜厚度进行测量。结果表明,在全膜润滑条件下,随倾角的增大膜厚表现为先上升再下降的趋势;当膜厚较高时,最高油膜承载力对应的收敛比接近理论值;当膜厚降至亚微米量级时,最高承载力对应的收敛比增加,与经典理论不符。而在有限供油条件下,随速度增加油膜厚度先增大后基本保持不变;随倾角变化,油膜厚度变化与全膜润滑相近。  相似文献   

5.
How hydrodynamic and boundary lubrication affect a lubricant's film strength when cold rolling aluminum was studied using a laboratory mill. The film strength of the lubricant was determined by increasing the amount of reduction until a rapid rise in load and temperature produced a herringbone pattern on the surface of the metal. The hydrodynamic lubrication was changed by increasing the viscosity of the base oil or by increasing the rolling speed. The boundary lubrication was changed by increasing the concentration of the additives or by changing the type of additives. The results of the test showed that either increasing the amount of the hydrodynamic lubrication or increasing the amount of the boundary lubrication were effective ways to increase the film strength of the lubricant; however, the effectiveness of each decreased as the calculated film thickness of the lubricant increased. It is proposed that this can be explained by the decrease in contact area between the work roll asperities and the surface of the sheet as the thickness of the lubricant film increases.  相似文献   

6.
This paper proposes an analytical model for line (1D) and point contacts (2D), based upon the Ertel’s hypothesis to predict the evolution of film thickness in steady-state and transient conditions in elastohydrodynamic lubrication. This theoretical approach, applied to a velocity ramp at constant deceleration, is perfectly supported by experimental results in terms of film thickness distribution during the deceleration process and in terms of central film thickness at the vanishing of the entrainment velocity. This work emphasizes the role of the transport effects of the lubricant at the instantaneous entrainment velocity on the time and length scales at which the film thickness disturbances induced by the deceleration process occur until the complete halting of the surfaces.  相似文献   

7.
A steady hydrodynamic lubrication model that includes the pressure viscosity factor has been developed for the deep-drawing process. Equations for lubricant film thickness, radial and drawing stresses are presented. Analysis reveals that the pressure viscosity factor has a significant influence on estimating lubricant film thickness and radial and drawing stresses.  相似文献   

8.
The elastohydrodynamic lubrication regime occurs in systems where large elastic deformations, the hydrodynamic action of a converging wedge and eventually large variation of viscosity of the fluid combine to determine the formation of a continuous fluid film that separates the solid surfaces. Experimental and theoretical works, over the past few decades, have elucidated the role of various working and material parameters on the lubricant film thickness which plays a crucial role in protecting the solid surfaces from direct contact and ultimately from failure. These mechanisms are well understood for steady-state conditions; however, elastohydrodynamic contacts most often experience transient conditions, including variation of geometry, velocity of surfaces or load. In this case, the mechanisms of film formation are more complex involving film squeeze in addition to the mechanisms mentioned above. Experimental and theoretical modelling of transient phenomena in elastohydrodynamic lubrication include sudden variation of entrainment speed or load and changing geometry. No systematic experimental study on the effect of harmonic load vibration upon the elastohydrodynamic films has been published before. In order to cover this gap, this paper presents the results of an experimental study and of a simple theoretical approach on the behaviour of the elastohydrodynamic film thickness under harmonic variation of load.  相似文献   

9.
柴油机滑动轴承热流体动力润滑仿真研究   总被引:1,自引:1,他引:0  
根据径向滑动轴承热流体动力润滑理论,基于JFO理论提出的质量守恒边界条件,建立同时包含油膜完整区和空 穴压力变化的单缸柴油机滑动轴承热流体动力润滑模型,采用有限差分法求解模型方程,仿真分析滑动轴承的油膜厚度、油膜压力、润滑油流量和温度等参数对润滑性能的影响,分析内燃机滑动轴承润滑特性,为轴承润滑可靠性设计提供一定的理论依据.  相似文献   

10.
This paper describes some experimental studies about the effect of interface wettability on hydrodynamic lubrication film thickness by a custom-made slider bearing tester. The lubricated contact pair consists of a fixed-incline slider and a transparent disc, and a thin lubrication film can be generated when the disc rotates. The film thickness was measured by interferometry. The wettability of different slider surfaces was evaluated by the contact angle of the lubricant on them. The relationship of film thickness versus disc speed was measured under different liquid–solid interfaces, and the results showed that slider surfaces with strong wettability to the lubricant could generate higher film thickness. Furthermore, case experiments were carried out to validate the hydrodynamic effect by tailored-slippage. By numerical simulations, the experimental findings were tentatively explained with the phenomenon of wall slippage.  相似文献   

11.
The determination of hydrodynamic film failure has become one of the key aspects in the study of thin film lubrication (TFL) since the hydrodynamic effect of fluid film at nano-scale can be observed with recently developed experimental techniques. In the present paper, the relative optical interference intensity (ROII) technique with a resolution of 0.5 run in the vertical direction has been used to measure the film thickness. Experimental results show that the hydrodynamic effect can be clearly observed even at very low speed if the contact pressure is sufficiently low or if the viscosity of lubricant is comparatively high. When the pressure increases to a certain degree, the film will suddenly drop to the dimension of several layers of molecules and this is where the failure of the fluid film has taken place. For different viscosity of lubricants, the fluid film failure occurs at different rolling speeds and pressures. In addition, when the normal load becomes higher, a higher speed or larger viscosity is required to form the fluid film in the contact region. Finally, the effects of pressure, viscosity, and velocity on the occurrence of fluid film failure have been examined and a relationship involving the three parameters is proposed.  相似文献   

12.
P. M. Cann 《摩擦学汇刊》2013,56(3):698-704
The lubrication mechanisms of a grease in a rolling-element bearing has been studied through the measurement of film thickness in a rolling point contact. To simulate bearing conditions the contact runs under fully starved conditions; there is no attempt to maintain bulk flow of the grease into the inlet using an external supply. In consequence the film thickness drops off rapidly as the contact progressively starves. After a few minutes rolling (at constant speed) an equilibrium film thickness is attained which has two components: a residual film (hR) comprised of degraded grease thickener and a hydrodynamic component (hEHD) due to the liquid phase from the grease. The hydrodynamic contribution represents a balance between lubricant lost from the contact and replenishment from the grease close to the track. The ability of the grease to replenish the rolling track has been inferred from measurements of lubricant reflow around the static contact. These results are discussed in light of current starvation and grease lubrication models.  相似文献   

13.
基于FRAP的微间隙润滑油膜流速测量方法   总被引:1,自引:0,他引:1  
薄油膜润滑广泛存在于各类精密机械与微机电系统中。微纳米间隙内的润滑油流动是影响薄膜润滑承载力的重要因素,但目前薄润滑油膜的流速测量仍然缺少有效手段。本文基于荧光漂白恢复显微技术和漂白区域形状演化过程的成像分析,建立了油膜流速测量系统,可以对微米间隙润滑油膜的速度分布进行原位测量。利用建立的系统获得了厚度为8μm时聚丁烯PB450润滑油膜的库埃特流速分布。重建的荧光漂白强度分布曲线和实验测量结果的皮尔森相关系数大于0.95,且流速分布符合已有润滑理论,证明了测量结果的可靠性。  相似文献   

14.
C. Rajalingham  B.S. Prabhu 《Wear》1983,89(2):117-124
The well-known solutions for the pressure distribution in the lubricating film of a hydrodynamic journal bearing, satisfying the Reynolds boundary conditions, show a sudden change in the pressure gradient at the position of maximum film thickness, which is possible only if the lubricant is added precisely at this position. Since the pressure develops smoothly because of hydrodynamic action, a correction in the Reynolds boundary conditions is proposed and a new solution for the pressure distribution is obtained. The steady state characteristics of a hydrodynamic journal bearing using the new boundary conditions are compared with the well-known characteristics using the Reynolds boundary conditions.  相似文献   

15.
This paper describes an experimental study of hydrodynamic lubrication in wire drawing in which different types of lubricants (straight oils, emulsions and grease) are used. The experiments were conducted on a specially designed laboratory wiredrawing test rig, to assess the frictional force and film thickness, while drawing an aluminium wire at different speeds. Hydro-dynamic performance, including frictional force and film thickness, were measured and plotted graphically, showing lubricant and drawing speed as the main influences. Results indicate that the frictional force decreased and the oil film thickness increased using straight oils with high viscosity at high drawing speed.  相似文献   

16.
A numerical model coupling the hydrodynamic pressure of lubricant film with the deformation of foil structure was developed for a type of foil journal bearing with protuberant foil structure. An isothermal and isoviscous lubricant was used in the fluid model, and a perturbation method was applied to linearize the Reynolds equation. The top foil was modeled as a strip of rectangular thin plate supported at a rigid point. The distributions of film pressure, film thickness, and foil deformation were solved by the finite element method (FEM). The effects of eccentricity ratio, bearing number, and number of protuberances on the characteristics of bearings were analyzed.  相似文献   

17.
采用多光束干涉技术观察往复运动条件下润滑油膜的滑移及黏弹特性,研究振幅和频率对往复动态润滑弹流油膜的影响。结果表明:往复运动过程中,在特定时刻气穴的出现使油膜厚度逐渐减小,削弱了滑移程度;因润滑油的黏弹性而引起的运动滞后导致了油膜的非对称性;频率增大时,正行程末端时膜厚明显增大,油膜输送速度也随着增大;而负行程末端油膜受气穴的影响膜厚增大较慢;振幅(输入位移)增大时,正行程末端时油膜整体平移,而负行程末端入口凹陷呈现先变明显而后消失的现象。  相似文献   

18.
The technique of relative optical interference intensity (ROII) and simple numerical calculations were used to investigate the lubricating behavior of grease lubricant films in the rolling direction under swaying motions (acceleration/deceleration). Experimental results indicate that at a same entrainment velocity of the inlet, the central film thickness under deceleration is larger than that under acceleration. The minimum central film thickness in one swaying cycle does not occur at the moment of zero entrainment, but at the initial period of acceleration. At the moment of zero entrainment, the central film is thicker than its peripheries, and the value of the central film thickness increases with increases in the changing rate of the entrainment velocity. It is thought that the transient behaviors of the grease lubricant film deviate from those in steady state conditions. The profiles of the transient film thickness and the approximate thicknesses of elastohydrodynamic contact in the rolling direction calculated by using a simple numerical method are supported by the experimental results. The numerical method can also be used to explain the behavior of the grease lubricating film under non-steady state conditions. An erratum to this article can be found at  相似文献   

19.
采用数值分析方法研究速度对扇形可倾瓦推力轴承润滑性能的影响,分析速度对最小油膜厚度、最大油膜压力、最高油膜温度、功率损失和流量等参数的影响规律,得到了速度与扇形可倾瓦推力轴润滑参数的关系。结果表明:最小油膜厚度在一定的速度范围内随速度呈线性变化,且随着速度的增加而增加;最大油膜压力随速度的增大产生波动性变化,但最终逐渐稳定到某一具体值;随着速度的增加温度升高;瓦功耗和瓦流量随速度的增加基本上呈线性增加变化。  相似文献   

20.
基于面接触润滑油膜厚度荧光测量系统,研究润滑油中荧光剂强度与剪应变率的关系,筛选得到适合油膜厚度测量的润滑油和荧光剂的组合,并研究荧光强度和油膜厚度之间的关系。结果表明:R6G荧光剂和PEG400润滑油组合与Coumarin6荧光剂和PAO8润滑油组合的荧光强度不受剪应变率影响,可用于油膜厚度的荧光测量;荧光强度和油膜厚度存在单值线性关系,通过测量荧光强度可以求解油膜厚度。建立接触区周围油膜厚度及油池分布的测量方法,研究载荷和速度对油膜厚度以及接触区周围润滑剂的迁移特性的影响。结果表明:油膜厚度随速度增加而增加,随载荷增加而减小;随着速度增加,滑块入口处油池产生润滑剂堆积,出口处油池出现双侧脊分离,两侧面油池无明显变化;油池的变化是表面力、机械分离力和离心力综合作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号