首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
CANDLE (Constant Axial shape of Neutron flux, nuclide densities and power shape During Life of Energy producing reactor) burnup strategy can derive many merits. From safety point of view, the change of excess reactivity along burnup is theoretically zero, and the core characteristics, such as power feedback coefficients and power peaking factor, are not changed along burnup. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replacing fuels. About 40% of natural or depleted uranium undergoes fission without the conventional reprocessing and enrichment.

If the LWR produced energy of X Joules, the CANDLE reactor can produce about 50X Joules from the depleted uranium left at the enrichment facility for the LWR fuel. If we can say LWRs have produced energy sufficient for full 20 years, we can produce the energy for 1000 years by using the CANDLE reactors with depleted uranium. We need not mine any uranium ore, and do not need reprocessing facility. The burnup of spent fuel becomes 10 times. Therefore, the spent fuel amount per produced energy is also reduced to one-tenth.

The details of the scenario of CANDLE burnup regime after LWR regime will be presented at the symposium.  相似文献   


2.
The CANDLE burnup is a new reactor burnup concept, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed along the core axis from bottom to top (or from top to bottom) of the core and without any change in their shapes. It can be applied easily to a block-type high temperature gas cooled reactor (HTGR) using an appropriate burnable poison with a high neutron absorption cross section mixed with uranium oxide fuel. In this study, natural gadolinium is used as burnable poison. In the present paper, the simulation of the burnup for the steady state and the startup is performed.

For the steady state simulation with direct solutions of steady state nuclide densities as inputs, the difference between the results of the steady state analysis and the simulation analysis is very small. It confirms that the steady state analysis is correct. When the initial core is constructed from easily available nuclides, the simulation result gives a reactivity change of 1.7% at a burnup time of 0.7 years.  相似文献   


3.
《Annals of Nuclear Energy》2007,34(1-2):120-129
CANDLE (constant axial shape of neutron flux, nuclide densities and power shape during life of energy producing reactor) burnup strategy is applied to small (30 MWth) block-type high temperature gas-cooled reactors (HTGRs) with thorium fuel. The CANDLE burnup is adopted in this study since it has several promising merits such as simple and safe reactor operation, and the ease of designing a long life reactor core. Burnup performances of thorium fuel (233U, 232Th)O2 are investigated for a range of enrichment ⩽15%. Discharged fuel burnup and burning region motion velocity are major parameters of its performances in this study. The reactors with thorium fuel show a better burnup performance in terms of higher discharged fuel burnup and slower burning region motion velocity (longer core lifetime) compared to the reactors with uranium fuel.  相似文献   

4.
Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction.

The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead–Bismuth is used as coolant.

From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%.  相似文献   


5.
聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力。利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化。通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点。本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据。  相似文献   

6.
寿期内中子通量、核素浓度和功率分布的轴向形状均保持恒定(Constant Axial shape of Neutron flux,nuclide densities and power shape During Life of Energy produced,CANDLE)是实现原位增殖-焚烧(Breed-and-Burn,BB)模式的一种燃耗策略。CANDLE堆经易裂变燃料或外中子源进行点火,启动后由增殖燃料的燃烧实现自稳运行。若要CANDLE堆自稳运行于k_(eff)=1,必须对堆芯几何及燃料体积分数进行配置优化。最优配置方案可通过蒙特卡罗方法模拟CANDLE堆芯,根据有效增殖因子筛选得出。但该方法需耗费大量的计算时间,若采用1D模型近似模拟,并结合中子平衡方法进行分析,便可大幅节约计算时间,获得具有指导性意义的结果。本文将论证该方法的可行性,并应用该方法估算钠冷贫铀CANDLE堆半径在100 400 cm、燃料体积分数在35%60%变化时的最优配置。  相似文献   

7.
基于MCNP和ORIGEN的熔盐快堆燃耗分析计算   总被引:1,自引:1,他引:0  
熔盐堆是6种第4代先进核能系统中唯一使用液态燃料设计的反应堆型,其堆芯一回路中循环流动的熔盐既是燃料,也是冷却剂。这一特征在省去燃料元件加工制造步骤的同时,也使得熔盐堆能进行在线处理和在线添料的操作。因此,传统固态反应堆燃耗分析程序不再适用于熔盐堆。本文以熔盐快堆(MSFR)为分析对象,基于物理分析程序MCORE(MCNP+ORIGEN),将上述熔盐堆特点考虑进去,开发出能进行熔盐堆燃耗分析的MCORE-MS。初步分析表明,233 U-started模式下,熔盐在线处理可有效降低堆芯熔盐中裂变产物的含量,提高中子经济性。MSFR运行过程中能够一直保持负的温度反应性系数。  相似文献   

8.
行波堆是一种可实现自持增殖-燃耗的新概念快堆,它可直接使用天然铀、贫铀、钍等可转换核材料,实现非常高的燃料利用率。基于行波堆的原理,提出了具有现实应用价值的径向步进倒料行波堆的概念,并将其与典型钠冷快堆的设计相结合,采用数值方法对由外而内的径向步进行波堆二维渐近稳态特性进行了研究。计算结果表明:渐近keff随倒料循环周期近似抛物线分布,而渐近燃耗随倒料循环周期线性增长,满足临界条件的倒料循环周期中最大燃耗可达38%;堆芯功率峰随着倒料循环周期的增长,从燃料卸出区(堆芯中心)向燃料导入区(堆芯外围)移动,功率峰值逐渐降低,在高燃耗情况下,靠近堆芯中心的轴向功率分布呈M形。  相似文献   

9.
Since the innovative concept of CANDLE (Constant Axial shape of Neutron Flux, nuclide densities and power shape During Life of Energy producing reactor) burning strategy was proposed, intensive research works have been continuously conducted to evaluate the feasibility and the performance of the burning strategy on both fast and thermal reactors. We learned that one potential application of the burning strategy for thermal reactors is for the High Temperature Gas-Cooled Reactors (HTGR) with prismatic/block-type fuel elements. Several characteristics of CANDLE burning strategy such as constant reactor characteristics during burn-up, no need for burn-up reactivity control mechanism, proportionality of core height with core lifetime, sub-criticality of fresh fuel elements, etc. enable us to design small sized HTGR with a high degree of safety, easiness of operation and maintenance, and long core lifetime which are required for introducing the reactors into remote areas or developing countries with limited infrastructures and resources. In the present work, we report our evaluation results on small sized block-type HTGR designs with CANDLE burning strategy and compared with other existing small HTGR designs including the ones with pebble fuel elements, under both uranium and thorium fuel cycles.  相似文献   

10.
The limitation of natural uranium resources and the improvement of economic values of nuclear reactors are important issues to be solved in the future development of these reactors. In our previous study, we presented an innovative design for simplifying a pebble bed reactor, and the optimization of this design showed that burnup values could be increased and natural uranium uses could be reduced. The purposes of the current study were to design a simplified pebble bed reactor by removing the unloading device from the reactor system and to further optimize the burnup characteristics of this reactor with a peu à peu fuel-loading scheme by introducing thorium in the fuel configuration as a fertile material. Another goal was to optimize the fuel composition so that the system could achieve even better burnup characteristics and use scarce uranium resources more efficiently. Using a specially developed computer code, we analyzed and optimized the performance of a 110-MWt simplified pebble bed reactor using a peu à peu fuel-loading scheme. An optimized design using 30% of fertile thorium mixed with uranium fuel with 15% 235U enrichment and a 7% packing fraction calculated to achieve a high burnup of 140 GWD/T for more than 21 years' operation time that could save 13 to 33% of natural uranium use compared with the savings noted in our previous study. Neutronic, burnup and fuel economic analysis for this optimized design are discussed in this study.  相似文献   

11.
CANDLE reactor generates energy by using only natural or depleted uranium as make up fuel and achieves about 40% burn up without fuel recycling (Sekimoto, H., Ryu, K., Yoshimura, Y., 2001. CANDLE: the new burnup strategy. Nucl. Sci. Eng. 139 (3), 306–317). These distinctive characteristics eliminate the necessity of both enrichment and reprocessing processes that are recognized as essentially inevitable parts in the conventional nuclear energy concept.

This paper describes that the potential performance of CANDLE reactor to meet a projected energy demand growth of the world with stabilizing carbon dioxide concentration in the atmosphere and simultaneously minimize the risk of nuclear material proliferation.

A type of CANDLE reactor with moderate initial fissile inventory is feasible to be deployed with prompt enough introduction pace to satisfy the worldwide energy growth and limit the carbon dioxide concentration to about 550 ppm in the next century. Ultimately high proliferation resistance performance as a fission energy system is found for the CANDLE system due to the elimination of most vulnerable processes in the conventional fuel cycle.  相似文献   


12.
与压水堆相比,球床式高温气冷堆能在堆芯结构不做明显改变的情况下采用全堆芯装载混合氧化物(MOX)燃料元件。基于250 MW球床模块式高温气冷堆堆芯结构,设计了4种球床式高温气冷堆下MOX燃料循环方式,包括铀钚混合的燃料球和独立的钚球与铀球混合装载的等效方式,采用高温气冷堆设计程序VSOP进行分析,比较了初装堆的有效增殖因数、燃料元件在堆芯内滞留时间、卸料燃耗、温度系数等主要物理特性。结果表明:采用纯铀和纯钚两种分离燃料球且铀燃料球循环时间更长的方案,平均卸料燃耗较高,总体性能较其他循环方式优越。  相似文献   

13.
In the design of fast reactor core with higher burnup and higher linear power, prediction accuracy of burnup history of fuel pin should be upgraded so as to assure fuel integrity without extra design margin under increased neutron fluence and burnup. A method is studied to predict fuel pin-wise power and its burnup history in fast reactors accurately based on an analytic solution of diffusion theory equation on hexagonal geometry with boundary condition from core calculation by finite-differenced diffusion calculation code. The present method is applied to a fast reactor core model, and its accuracy in predicting fuel pin power is tested. The result is compared with the reference solution by the finite difference calculation with very fine mesh. It is found that the present method predicts the power peaking factors in fuel assemblies accurately. The fuel pin-wise nuclide depletion calculation is also done using neutron fluxes for each fuel pin. The result shows that the fuel pin-wise depletion calculation is very important in predicting the burnup history of the fuel assembly in detail.  相似文献   

14.
The CANDLE burnup strategy, where the distributions of fuel nuclide densities, neutron flux, and power density move with the same constant speed and without any change in their shapes, is applied to the block-type high temperature gas cooled reactor. If it is successful, a burnup control rod can be eliminated, and several merits are expected. This burnup may be realized by enriched uranium and burnable poison with large neutron absorption cross-section. With the fuel enrichment of 15%, gadolinium concentration of 3.0%, and fuel cell pitch of 6.6 cm, the CANDLE burnup is realized with the burning region moving speed of 29 cm/year and the axial half-width of power density distribution of 1.5 m. When the concentration of natural gadolinium is higher, the burning region moving speed becomes slower and the burnup becomes higher, though the effective neutron multiplication factor becomes smaller. When U-235 enrichment is higher, the effective neutron multiplication factor becomes larger, the speed becomes slower, and the burnup becomes higher. When the pitch is wider, the effective neutron multiplication factor becomes larger, the speed becomes faster, and the burnup becomes higher.  相似文献   

15.
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation’s energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.  相似文献   

16.
The advantages of once-through molten salt reactors include readily available fuel,low nuclear proliferation risk,and low technical difficulty.It is potentially the most easily commercialized fuel cycle mode for molten salt reactors.However,there are some problems in the parameter selection of once-through molten salt reactors,and the relevant burnup optimization work requires further analysis.This study examined once-through graphitemoderated molten salt reactor using enriched uranium and thori...  相似文献   

17.
快堆金属燃料的发展   总被引:1,自引:0,他引:1  
胡赟   《原子能科学技术》2008,42(9):810-815
国外早期快堆发展的燃料集中在金属燃料上,但金属燃料辐照肿胀严重,只能实现较低的燃耗深度,且较低的固相线温度和与包壳间的共晶温度又制约了金属燃料的实际应用。文章回顾国外金属燃料的发展和主要问题的解决方法,并总结金属燃料改进后可行的设计方案。随后整理早期、后期金属燃料的辐照经验,给出已验证的最大燃耗深度。  相似文献   

18.
本文研究了一种空间锂冷概念快堆的堆芯中子学特性。反应堆燃料采用氮化铀,冷却剂采用7Li液态金属,主要结构材料采用W-25%Re。反应堆的控制靠反射层内的控制鼓来实现。建立了程序的计算模型,通过计算和分析,给出了堆芯的主要尺寸和物理参数,计算了堆芯的控制鼓价值、燃耗和功率分布。分析了堆芯中Re的谱移吸收特性和满功率运行7 a不需换料的性能,谱移吸收特性能确保反应堆在发射失败浸在水或湿沙中时处于次临界状态。  相似文献   

19.
次临界能源堆物理性能初步分析   总被引:2,自引:1,他引:1  
次临界能源堆(SER)是由托卡马克聚变源驱动的聚变裂变混合堆。SER以天然铀为燃料、水为冷却剂,主要目标是生产电能。本工作建立了次临界能源堆环形圆柱模型,利用蒙特卡罗输运和燃耗计算程序,比较了燃料区不同构型对keff、M、TBR和燃料增殖比等参数的影响,针对均匀模型进行中子源效率与聚变源强、功率分布与能谱、初步燃耗、寿期末停堆衰变热和卸载燃料放射性等物理性能分析。计算结果表明,该模型能满足能量倍增大于6、氚自持、较长时间不换料等设计目标。研究结果为下一步开展SER安全分析提供了基础。  相似文献   

20.
The performance of natural uranium and thorium-fueled fast breeder reactors (FBRs) for producing 233U fissile material, which does not exist in nature, is investigated. It is recognized that excess neutrons from FBRs with good neutron economic characteristics can be efficiently used for producing 233U. Two distinct metallic fuel pins, one with natural uranium and another with natural thorium, are loaded into a large sodium-cooled FBR. 233U and the associated-U isotopes are extracted from the thorium fuel pins. The FBR itself is self-sustained by plutonium produced in the uranium fuel pins. Under the equilibrium state, both uranium and thorium spent fuels are periodically discharged with a certain discharge rate and then separated. All discharged fission products are removed and all discharged actinides are returned to the FBRs except the discharged uranium utilized for fresh fuel of the other thorium-cycled reactors. 233U-production rate of the FBRs as a function of both the uranium–thorium fuel pins fraction in the core and the discharge fuel burnup is estimated. The result shows that larger fraction of uranium pins is better for the FBR criticality while larger fraction of thorium fuel pins and lower fuel burnup give higher 233U production rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号