首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
R410a是一种被广泛看好的R22替代物,研究R410a的凝结压降特性对开发适用此种制冷工质的凝结换热设备有重要意义。搭建了微细尺度凝结压降实验台,实验研究了R22和R410a在内径为0.941mm水平不锈钢圆管内饱和温度为40℃、质量流速为200-1000 kg/m^2.s、干度为0.2-0.8时的凝结压降特性。实验结果表明:凝结压降随着质量流速的增大而增大,在较高干度时更加明显。与R22相比,R410a的凝结压降在较低干度和质量流速时与R22相当,在较高干度和较高质量流速时明显低于R22。  相似文献   

2.
王皓宇  柳建华  张良  余肖霄 《制冷学报》2020,41(3):78-82+90
本文研究了R290在内径为1 mm、2 mm和4 mm水平微细圆管内的沸腾流动换热特性,在饱和温度为15℃条件下,质量流速为50~600 kg/(m~2·s)、干度为0~1、热流密度为5~20 k W/m~2时,对沸腾传热系数的影响进行了分析。通过实验发现,增大质量流速对传热系数具有增强作用,质量流速对传热系数的影响在低干度区域比高干度区域小。在热流密度方面,传热系数随着热流密度的增大而增大,且在1 mm和2 mm管内观察到了临界干度对传热系数的影响,这时传热系数有断崖式下降的趋势。在管径对于传热系数的影响方面,通过对不同管径换热特性的横向对比,发现在一定工况下传热系数随着管径的减小有所上升。此外本文还对R290已有的部分关联式进行了适配性验证。  相似文献   

3.
R410A应用于内螺纹强化管的蒸发实验研究   总被引:1,自引:1,他引:0  
R410A不会与臭氧发生反应,即不会破坏臭氧层,是国际公认的用来替代R22最合适的的冷媒之一。实验研究了环保替代制冷工质R410A、R22在水平内螺纹强化管管内蒸发的换热特性,探索了水流速度对换热特性、压降的影响。实验结果表明:制冷剂R410A、R22的换热系数和压降随质量流速的增大而增大,当质量流速小于300 kg/s.m2时,两者的换热系数hr和压降Δp曲线基本吻合,当质量流速大于300kg/s.m2时,R410A的换热系数hr和压降Δp小幅增加,而R22的换热系数hr和Δp增加幅度较大。因此在质量流速要求不太大的情况,R410A比R22有更好的换热效率和较小的压降,可以用来替代R22。  相似文献   

4.
为评估制冷工质和管材及管径对强化管的冷凝传热影响规律,采用实验方法对R410a和R22在内螺纹管内的冷凝传热进行了测试。所采用的管外径包括7 mm和9.52 mm,管材料包括铝和铜。制冷剂的冷凝温度为47℃,质量流速为200—400 kg/(m2·s),入口干度从0.1—0.8变化,出口干度比进口干度低0.1。研究结果表明,波状分层流和环状流的转变干度介于0.4—0.5之间。R22的冷凝压降显著高于R410a,且压降增速快于R410a;当干度介于0.2—0.4时,R410a和R22的冷凝传热系数较为接近。干度与PF呈负相关关系,干度的增加并没有带来PF的改善,R410a和R22的PF比较接近。7 mm铜管和铝管管壁导热热阻与制冷剂冷凝热阻之比小于2%,制冷剂侧冷凝热阻占主导地位;管径对冷凝传热的影响远高强化表面结构,随着管径的减小,剪切力和表面张力逐渐取代重力,成为主导力,有利于去除和稀释底部的液膜。  相似文献   

5.
何宽  柳建华  余肖霄 《制冷学报》2019,40(5):118-123
本文对R290在5mm小管径内的流动沸腾换热特性进行实验研究,重点研究热流密度、质量流率及饱和温度对沸腾换热表面传热系数的影响。实验工况为:热流密度10~60 k W/m2、饱和温度15~25℃、质量流率50~200 kg/(m2·s)、干度0. 1~0. 9。结果表明:增加热流密度可实现强化换热,提高表面传热系数,使干涸现象提前发生,并加剧干涸;质量流率在低干度区间对表面传热系数的影响较小,在中干度和高干度区间表面传热系数与质量流率分别呈正相关;当热流密度较低时,在中干度区间,增大饱和温度会使表面传热系数降低;而在较高的热流密度下,增大饱和温度明显引起表面传热系数的上升。  相似文献   

6.
为评估不同三维双侧不锈钢强化管冷凝传热特性,采用实验方法对R410a在强化管内的冷凝传热进行了测试,并将结果与光滑管进行了比较。所采用的管型包括EHT-HB/D、EHT-HB、EHT-HB/HY、EHT-HX。R410a冷凝的饱和温度为318.15 K,质量流速为40—240 kg/(m2·s),入口干度为0.8,出口干度为0.2。研究结果表明,对光滑管内冷凝传热系数,Cavallini模型预测精度最高,偏差在9%之内。EHT-HB/D具有最佳的冷凝综合传热-阻力特性,PF可达到1.38—1.67,这与增加流体扰动、增强湍流强度、提高排液效果相关;EHT-HX综合性能最差,PF仅有0.99—1.14,甚至逊于光滑管。EHT-HB翅片结构可以使液体更容易从翅片顶部流到槽内,增加流体的扰动。而EHT-HB/HY的翅片结构,使得液体在疏水纹处不易排除,增加了局部传热热阻。随着质量流速的增加,PF均呈现先下降后缓慢增加并趋于平缓。修正后的Huang模型,预测所有管型的冷凝传热系数偏差在±30%之内。  相似文献   

7.
本文搭建了水平单管降膜蒸发实验台,以R245fa为工质实验研究两种三维翅双侧强化管降膜蒸发的换热特性。提出了新型Wilson-Gnielinski图解法,用于从实验的总传热系数中获得管内外表面传热系数。分析强化管表面结构对换热性能的影响,拟合出管内外换热关联式并提出强化换热方案。结果表明,与光滑管理论表面传热系数相比,Y型管的管内、管外换热强化倍率分别为2.12~2.94和2.27~5.54,T型管的管内、管外强化倍率分别为2.48~2.98和2.58~3.00。Y型管管外换热性能较好,T型管管内换热性能较好。Y型管的最佳喷淋密度(0.14~0.18 kg/(m·s))比T型管的最佳喷淋密度(约0.10 kg/(m·s))大;两种强化管表面传热系数均随热流密度的增加先上升后下降,但Y型管表面传热系数的变化速率较快;两种管子的换热效果均随蒸发温度的升高而增强。  相似文献   

8.
对R32在水平光滑管和微肋管(外径均为7mm)内的沸腾换热特性展开试验研究,测试的制冷剂质量流速为100~250 kg/(m~2·s),饱和蒸发温度为7~11℃,热流密度为3~8 kW/m~2,测试管内制冷工质平均干度值为0~0.7。试验结果表明:热流密度是影响R32沸腾换热系数的主导因素之一,质量流速的增大、饱和蒸发温度的升高、热流密度的增大均有利于提高R32的沸腾换热系数;微肋管有强化传热的效果,其平均沸腾换热系数比光管增大11.8%~33.2%;干度对R32沸腾换热系数的影响比较复杂,R32的沸腾换热系数随干度的增加先增大后减小,这是由于出现了干涸值,本文试验测得的干涸值范围为0.41~0.57,制冷剂质量流速的降低和热流密度的增大均有利于干涸值的增大。  相似文献   

9.
在1根光管、2根微肋管内运行了R1234yf两相流动冷凝换热实验,工况设定中冷凝温度为40℃、43℃、45℃,质量流量为500—900 kg/(m~2·s),换热管进出口处制冷剂干度分别为0.8—0.9、0.2—0.3。实验结果显示:传热系数随冷凝温度的降低、质量流量的增加而增大,且微肋管内传热系数均大于光管内传热系数,其中8°和15°肋片螺旋角微肋管换热强化倍率分别为2.51—2.89、3.11—3.57,均大于其面积增加比;使用关联式对管内传热系数预测时:Cavallini et al关联式对光管内传热系数预测精度最高,其预测误差范围在±8%以内,预测平均误差为0.56%;Cavallini et al关联式和Koyama et al关联式对微肋管内传热系数预测精度较高,其预测误差范围在±25%以内,两者的平均预测误差小于6%。  相似文献   

10.
氨制冷剂存在可燃性和毒性,因此减少其在制冷系统中的充注量极为重要。小管径换热管通常可以提供更高的表面传热系数,这可以作为提升换热器紧凑性同时减少系统中充注量的有效方法。本文搭建了氨制冷剂管内流动沸腾换热及压降测试实验装置,测试了氨制冷剂在4 mm水平光管内的流动沸腾换热及压降,并分析了干度、质量流速及热流密度对换热及压降特性的影响。结果表明:流动沸腾换热表面传热系数随着干度的增加而增大,同时质量流速和热流密度越高,流动沸腾换热表面传热系数越大。此外,氨制冷剂在管内的两相摩擦压降也随着干度的增加而增大,在固定干度下,质量流速的升高导致压降增大。  相似文献   

11.
本文针对5 mm微肋管内R404A流动沸腾换热进行实验研究,并将研究结果与筛选出的一批换热模型进行适配性验证。实验工况:热流密度5~25 kW/m^2、饱和温度0℃、质量流率200~500 kg/(m^2·s)、干度为0.1~0.9。结果表明:Zhang Xiaoyan等的模型由于工质热物性差异较大,过高的预测了部分数据;Liu Zhongliang等的模型低估了热流密度对传热系数的影响,过低的预测了实验数据;S. M. Kim等的模型不能体现高干度区域传热系数的衰减,整体预测精度不高;K. E. Gungor等的模型能够很好的解释管内传热的过程,同时预测精度较高,平均绝对偏差仅27.46%。乘以修正系数1.372后的模型平均绝对偏差仅为8. 95%,落在30%偏差带上的数据多达98.18%。  相似文献   

12.
Heat transfer coefficient and pressure drop were measured for condensation and evaporation of R410A and HCFC22 inside internally grooved tubes. The experiments were performed for a conventional spiral groove tube of 8.01 mm o.d. and 7.30 mm mean i.d., and a herring-born groove tube of 8.00 mm o.d. and 7.24 mm mean i.d. To measure the local heat transfer coefficients and pressure drop, the test section was subdivided into four small sections having 2 m working length. The ranges of refrigerant mass flow density was from 200 to 340 kg/(m2 s) for both condensation and evaporation of R410A and HCFC22, and the vapour pressure was 2.41 MPa for condensation and 1.09 MPa for the evaporation of R410A. The obtained heat transfer data for R410A and HCFC22 indicate that the values of the local heat transfer coefficients of the herring-bone grooved tube are about twice as large as those of spiral one for condensation and are slightly larger than those of spiral one for the evaporation. The measured local pressure drop in both condensation and evaporation is well correlated with the empirical equation proposed by the authors.  相似文献   

13.
本文实验研究了R410A在水平内螺纹管内的流动凝结换热特性,分析了水力工况、测试管结构参数对管内制冷剂侧表面传热系数、压降的影响。结果表明:表面传热系数、压降均随着质量流速的增加、冷凝温度的降低而增大;虽然表面传热系数随着测试水Re的增加而减小,但测试水Re对压降的影响很小。利用单位压降表面传热系数对换热进行综合性能评价时发现,单位压降表面传热系数随着质量流速的增加而减小,随着冷凝温度的增大而增大。将实验数据与经典关联式的预测值进行对比,对于光滑管,除了Akers et al.关联式低估了实验数据,Shah关联式与Thome et al.关联式均高估了实验数据,并且Thome et al.关联式表现出最高的预测精度。而对于内螺纹强化管,Cavallini et al.关联式展现出最高的预测精度,而Koyama et al.关联式与Miyara et al.关联式均低估了实验数据。  相似文献   

14.
Heat transfer coefficients were measured for the condensation of R410A and R22 inside internally grooved horizontal tubes. The experiment was performed for five different kinds of internally grooved tubes of about 8.00 mm o.d. the shapes of which were conventional helical grooved and herring-bone grooved ones. To measure the local heat transfer coefficients, the test section was subdivided into 10 small sections having 1 m working length. The ranges tested are as follows: the refrigerant mass velocity was from 130 to 400 kg/(m2/s) for R410A and R22, and the vapour pressure was 2.4l MPa for R410A and 1.53 MPa for R22. The obtained heat transfer data of R410A and R22 indicate that the values of the local heat transfer coefficients of the herring-bone grooved tube are about twice as large as those of helical one. All measured local heat transfer coefficients of condensation were compared with the predicted values from previous correlations proposed by other researchers, and were well correlated with the empirical equation using the frictional coefficients for each tube proposed by the author.  相似文献   

15.
An experimental investigation of condensation heat transfer in 9.52 mm O.D. horizontal copper tubes was conducted using R22 and R410A. The test rig had a straight, horizontal test section with an active length of 0.92 m and was cooled by the heat transfer fluid (cold water) circulated in a surrounding annulus. Constant heat flux of 11.0 kW/m2 was maintained throughout the experiment and refrigerant quality varied from 0.9 to 0.1. The condensation test results at 45 °C were reported for 40–80 kg/h mass flow rate. The local and average condensation coefficients for seven microfin tubes were presented compared to those for a smooth tube. The average condensation coefficients of R22 and R410A for the microfin tubes were 1.7–3.19 and 1.7–2.94 times larger than those in smooth tube, respectively.  相似文献   

16.
一种新型高效传热铜管的冷凝传热性能实验研究   总被引:1,自引:0,他引:1  
建立无润滑油实验台,以R22。R134a和R410A为工质。测试新型铜管Turbo-DWT和常规内螺纹铜管Turbo—A的冷凝传热性能,并进行比较。从实验数据可知。新管型Turbo-DWT的冷凝传热系数高于Turbo-A约42%,且压降低于Turbo-A约65%(R134a)。三种制冷荆相比,R22的传热系数最高,R410A的压降最小。Turbo-DWT是一种更高效的冷凝传热管,且适用于各种冷媒。  相似文献   

17.
An investigation of the change in condenser overall heat transfer coefficient when replacing R22 with one of the three mixtures R407C, R404A and R410B was made, both experimentally and theoretically. Measurements have been carried out on a full-scale test plant consisting of a horizontal shell-side condenser. According to the measurements the decrease in overall heat transfer coefficient for the non-azeotropic mixture R407C was very large, up to 70% compared to R22, while for the near-azeotropic mixture R404A the decrease was less than 15%. Simulations of the condenser were done with a comprehensive computer program, calculating the condensation heat transfer with an approximate method including a correction for mass resistance. The calculation model was not able to predict this large degradation for the non-azeotropic mixture, while the predictions agreed rather well with the measurements for the pure fluid and the near-azeotropic mixtures.  相似文献   

18.
对R134a在水平直管和螺旋管内的沸腾换热特性进行了实验研究.在三个不同的蒸发温度(5℃、10℃和20℃),工质R134a的质量流量范围为100~400kg/(m~2·s)和干度范围为0.1~0.8的条件下,实验得到了R134a在水平直管和螺旋管内的沸腾换热系数随其质量流量和干度的变化关系,将水平直管和螺旋管内的沸腾换热特性数据进行了比较,结果显示,在实验条件下,卧式螺旋管的传热系数比直管的平均增加13.7%.  相似文献   

19.
采用分布参数法对波纹型通道板式蒸发器建立数学模型,并进行了数值模拟.通过计算板内局部蒸发传热系数和压降可以简化板式蒸发器内复杂三维网状流动的传热特性.针对应用较广的R134a和R410A制冷剂来比较和分析板式蒸发器在小的温差下的传热性能.在3种不同的计算工况下简要分析了各种热力参数的变化对蒸发器整体传热性能的影响.不同的制冷剂,其传热系数和压降差别较大,相同工况下采用R410A替代R22,板式蒸发器的传热性能可提高8.5%~10.0%,且压降可大幅降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号