首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
超高分子量聚乙烯纤维是支撑世界高新技术产业的重要新材料之一,也是我国"十五"规划重点发展的高科技项目和国家鼓励发展的特种纤维品种之一,因其分子量极高,主链结合好,取向度和结晶度高,强度为当今所有新型化纤材料之最,在高级轻质复合材料中显示出极大的优势,广泛应用于国防军工、安全防护、航空航天、航海、兵器、造船等诸多领域,成为目前发展最快的高性能纤维。本文介绍超高分子量聚乙烯纤维的物化性能、制造工艺、产业现状、应用领域、市场前景等方面的一些情况,并对今后国内超高分子量聚乙烯纤维产业的发展提出了建议。  相似文献   

2.
超高分子量聚乙烯的特性及应用进展   总被引:12,自引:0,他引:12  
超高分子量聚乙烯性能卓越、加工困难,是一种正在迅速崛起的工程性热塑性塑料。由于加工困难.国内外超高分子量聚乙烯的应用多集中在压制产品上,但是材料学家们从来没有停止过对超高分子量聚乙烯挤出制品的探讨。超高分子量聚乙烯的卓越性能源自于它具有极高的分子量,因此对超高分子量聚乙烯改性成功与否的判定在很大程度上取决于其制品的分子量保留的程度和在低温下的冲击韧性。作者利用新的挤出理念,精确的配方和精湛的工艺成功的挤出了分子量在250万以上的超高分子量聚乙烯管材制品,并对超高分子量聚乙烯的纤维、膜制品的应用进行了概要的介绍。  相似文献   

3.
余黎明 《化学工业》2012,(9):1-5,15
超高分子量聚乙烯纤维是第三代高性能纤维。本文从市场、生产和加工工艺技术角度对我国超高分子量聚乙烯行业发展现状进行了分析,并对我国"十二五"期间超高分子量聚乙烯行业的发展前景进行预测。  相似文献   

4.
超高分子量聚乙烯纤维因优异性能在航空航天、军事防护、海洋工程及纺织等领域具有广泛的应用前景,是世界各国竞相发展的战略性新材料。本文梳理了我国超高分子量聚乙烯纤维发展历程,总结了当前产业发展现状,分析了存在的问题,并对未来发展提出建议。  相似文献   

5.
超高分子量聚乙烯纤维性能及应用概述   总被引:3,自引:0,他引:3  
任意 《广州化工》2010,38(8):87-88
超高分子量聚乙烯纤维有着高取向度,高结晶度,强力、模量高,抗冲击,耐腐蚀,耐光照,耐挠曲,耐磨损等优点。它的密度比水小,介电性能好。超高分子量聚乙烯纤维的缺点是使用温度不高,耐氧化性能差,抗蠕变性能差,表面加工困难。正是超高分子量聚乙烯纤维自身所具有的这些特点,它在抗冲击防护,低温,耐压,海洋工程,渔业等领域有着广泛地使用。  相似文献   

6.
汪家铭 《化学工业》2014,32(8):32-38
介绍超高分子量聚乙烯纤维的物化性能、制造工艺、产业现状、应用领域、市场前景等方面的一些情况,并对今后国内超高分子量聚乙烯纤维产业的发展提出了建议.  相似文献   

7.
超高分子量聚乙烯纤维表面处理   总被引:17,自引:4,他引:13  
本文简要介绍了超高分子量聚乙烯纤维的发展和性能,详细总结了超高分子量聚乙烯纤维的低温等离子、接枝、电晕和辉光放电、氧化等多种表面处理方法,并进行了比较,阐述了目前研究的现状和今后的发展趋势。  相似文献   

8.
改善超高分子量聚乙烯纤维粘合性能的研究   总被引:6,自引:0,他引:6  
本文旨在分析、探讨超高分子量聚乙烯纤维表面处理的各种方法,如等离子体法、化学试剂氧化法等。通过其表面处理,纤维表面或粗糙度有了提高或携带了极性基团,从而使超高分子量聚乙烯纤维与基体粘合性能得以改善。尤为关注近几年来对超高分子量聚乙烯纤维的改性新动态.  相似文献   

9.
超高分子量聚乙烯纤维的技术与市场发展   总被引:3,自引:1,他引:2  
本文简要介绍了世界高性能纤维主要品种——超高分子量聚乙烯纤维的基本性能和主要应用领域,重点归纳了十几年来国内外相关企业的生产、技术和行业发展状况,综合分析了国内外超高分子量聚乙烯纤维及其复合材料市场的供需趋势,指出了该种纤维行业具有良好的产业发展优势与前景。  相似文献   

10.
通过对不同生产厂家的超高分子量聚乙烯(UHMWPE)树脂的黏均分子量、结晶度、溶胀后料液的流变特性等物化性质进行对比和分析,采用凝胶纺丝-超高倍拉伸技术对UHMWPE树脂进行纺丝,制备了细旦高强超高分子量聚乙烯纤维,对纤维的结晶度、纤度及力学特性进行了测试分析。结果表明,UHMWPE树脂的结晶度、颗粒大小等物理特性对制备的成品纤维的性能有较大的影响,树脂的黏均分子量与其结晶度不成正相关,而与其制备的成品聚乙烯纤维的结晶度成正相关,且结晶度越高制备的纤维性能更优异;黏均分子量大、原料液较优的流变特性均有利于双螺杆的加工,其成品纤维的强度、模量均较高,黏均分子量大、粒径分布窄,更有利于制备细旦高强超高分子量聚乙烯纤维,同时,超倍机械热牵伸是目前提高超高分子量聚乙烯纤维力学性能较有效的方法。  相似文献   

11.
超高分子量聚乙烯纤维概述   总被引:1,自引:0,他引:1  
张博 《广州化工》2010,38(4):28-29
超高分子量聚乙烯纤维因其具有的高断裂强度,高初始模量,低断裂伸长率,与芳香族纤维,碳纤维并称为目前能够实现工业化生产的三大高性能纤维。目前,在防护、绳缆等领域显示出良好的使用性能。该纤维是"十一五"规划重点发展的高科技项目和国家鼓励发展的特种纤维之一。目前,荷兰、日本、美国、中国实现了该纤维工业化生产,英国、俄罗斯等国也开展了对该纤维的研究工作。本文对超高分子量聚乙烯纤维的发展史,性能,生产工艺,并对今后的发展前景进行了预测。  相似文献   

12.
超高分子量聚乙烯纤维表面处理的研究进展   总被引:8,自引:1,他引:8  
详细介绍了超高分子量聚乙烯纤维的各种表面处理方法 ,如等离子体处理、电晕放电和化学氧化等 ,重点讨论了这些方法对纤维增强复合材料粘结性能和力学性能的影响 ,特别关注了近年来各种表面处理超高分子量聚乙烯纤维技术的进展。  相似文献   

13.
杨洪江 《广州化工》2014,(11):20-21,49
超高分子量聚乙烯是第三代高性能纤维,具有优良的抗冲击性、耐化学腐蚀性和自润滑性等性能。文章综述了超高分子量聚乙烯的的生产现状,对其发展前景进行预测,同时对超高分子量在各个领域的用途进行了详细的论述,并提出了一些优势应用领域。  相似文献   

14.
介绍了超高分子量聚乙烯纤维的制备方法以及现在一般使用的工业化制造技术,并对工业化生产制造方法进行了对比分析,比较了其各自的优缺点;介绍了超高分子量聚乙烯纤维在缆绳、防弹等应用领域的的一些应用技术,对如何提高纤维的应用性能作了分析,提出了一些建议和措施;针对国产超高分子量聚乙烯纤维及其复合材料的制造及应用提出了一些需要进一步解决的问题和提高的方向。  相似文献   

15.
正本发明提供一种特高强超高分子量聚乙烯纤维的制备方法,采用线性低密度聚乙烯与超高分子量聚乙烯和溶剂共混制备超高分子量聚乙烯纤维,并通超倍拉伸形成高强纤维。将500万~1 000万超高分子量聚乙烯的低溶度溶胀混合物与线性低密度聚乙烯按比例在纺丝溶剂中混合,通过提高超高分子量聚乙烯的分子链长度和添加线性低密度聚乙烯降低纺丝液的黏度,降低螺杆的温度减  相似文献   

16.
用真空浸渍法成功制备出了超高分子量聚乙烯纤维/有机玻璃(UHMWPE/PMMA)复合材料,并对基体材料PMMA,单向超高分子量聚乙烯纤雏/有机玻璃复合材料以及三维编织超高分子量聚乙烯纤维/有机玻璃(即UHMWPE3D/PMMA)复合材料的摩擦磨损性能进行了研究。实验证明UHMWPE/PMMA复合材料具有优良的摩擦磨损性能。经过纤维增强的复合材料的摩擦磨损性能优于基体材料,三维编织纤维增强的复合材料其磨损远小于单向纤维增强的复合材料,但其摩擦系数没有显著变化。  相似文献   

17.
用凝胶纺丝法制备了超高分子量聚乙烯(UHMWPE)/高分子量聚乙烯(HDPE)纤维,探讨了添加不同种类高分子量聚乙烯对凝胶初生纤维在后续延伸过程中延伸性能的影响。结果表明在固定制备条件时,当超高分子量聚乙烯(UHMWPE)/高分子量聚乙烯(HDPE)的质量比在最适当质量比时,高分子量聚乙烯的分子量为1.5~2.0×104时,所制备的凝胶初生纤维的可延伸比达最大值。  相似文献   

18.
专利文摘     
正一种改性超高分子量聚乙烯纤维混纺制备方法本发明公开了一种改性超高分子量聚乙烯纤维混纺制备方法。其制备步骤为:步骤一,改性超高分子量聚乙烯的制备;A.先将超高分子量聚乙烯研磨成粉加入到反应釜中,然后向反应釜中加入十氢萘溶剂并对其进行加热溶解,制得超高分子量聚乙烯溶液;B.然后向反应釜中加入PTFE乳液、硅烷偶联剂、石墨和助剂,制得改性超高分  相似文献   

19.
超高分子量聚乙烯纤维是一种新型高性能纤维,由其制作成的缆绳耐磨损、抗冲击、抗耐腐蚀、不易被海洋生物附着。本文将某品牌超高分子量聚乙烯纤维缆绳与传统锚链进行对比,得出其优势,论证超高分子量聚乙烯纤维缆绳在代替传统浮标锚链的可行性,指出了存在的问题,并提出了对未来的展望。  相似文献   

20.
以聚苯乙烯颗粒为轻质集料,水泥和粉煤灰为胶凝材料,辅以多种外加剂,经化学发泡工艺制备水泥基墙体保温材料。通过掺加不同掺量的超高分子量聚乙烯纤维,研究了超高分子量聚乙烯纤维对水泥基墙体保温材料性能的影响,并采用扫描电子显微镜对试样的断口形貌进行分析,对超高分子量聚乙烯纤维的相关作用机理进行分析。研究结果表明:超高分子量聚乙烯纤维的最佳掺量为0.4%,此时水泥基轻质墙体保温材料的抗折强度、抗压强度、抗折软化系数分别为0.47 MPa、0.58 MPa、0.56,较空白试样分别提高了76.0%、61.1%、33.3%,在此条件下试样的密度和导热系数分别为218 kg/m3、0.056 W/(m.K)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号