首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
采用自制的纳米Al2O3,以火焰原子吸收光谱法为检测手段,考察了纳米Al2O3在静态条件下对Zn2 的吸附性能。结果表明,在pH=6时,纳米Al2O3对Zn2 有较好的吸附性能,吸附容量可达5 500μg/g。干扰离子Ni2 、Cu2 、Mn2 对纳米Al2O3吸附Zn2 影响较小,吸附于纳米Al2O3上的Zn2 可以用1 mol/L的盐酸洗脱,洗脱率达80%以上。  相似文献   

2.
建立一种简单、有效、应用性强的地下水除铁锰方法,研究了Na型斜发沸石除铁锰及其影响因素并建立了再生方法。研究表明Na型斜发沸石对Fe(Ⅱ)和Mn(Ⅱ)均表现出较强的吸附能力,对Fe(Ⅱ)和Mn(Ⅱ)的最大饱和吸附量分别达4.00mg/g和3.50mg/g:且吸附速率快,吸附动力学较好地符合Lagergren一级吸附动力学模型。采用Langmuir吸附等温线能较好描述Bio-F吸附F(Ⅱ)(P.2-0.9814)及Mn(Ⅱ)(P.2-0.9899)的过程。该吸附剂在pH6~7范围内可保持90%以上吸附Fe(Ⅱ)和Mn(Ⅱ)的能力。Na型斜发沸石可用15%的NaCl溶液再生,10次再生实验证明其吸附容量可保持100%,研究表明该方法用于高铁锰饮用水处理具有较强的应用价值。  相似文献   

3.
陈云祥  徐军 《化工进展》2004,23(1):104-106
用火焰原子吸收光谱法测定了复合金属催化剂洗液中的Ni、Co、Mn、Zn,比较了两种不同处理样品方法对分析结果的影响。Ni、Co、Mn的线性范围为0-4.0μg/mL,Zn的线性范围为0-0.8μg/mL。方法的回收率为94.58%~101.25%,相对标准偏差为0.8%-3.6%。本法应用于有机物中Ni、Co、Mn、Zn测定,取得较满意分析结果。  相似文献   

4.
纳米二氧化钛对隔离子的吸附研究   总被引:1,自引:0,他引:1  
尹洪喜  张万忠  高恩君 《当代化工》2007,36(5):482-484,487
研究了纳米二氧化钛吸附溶液中镉离子的有效方法和途径.采用双硫腙直接比色法测定镉离子浓度,详细研究了纳米二氧化钛吸附镉离子过程中的影响因素.通过实验,确定了吸附的最佳条件,进一步研究了吸附镉离子后二氧化钛的洗脱以及设想模拟实体水样中痕量镉离子的检测.样品体系在pH=10,震荡时间9 min以上的条件下,纳米二氧化钛对镉离子的吸附率可达99 %.吸附在纳米二氧化钛上的镉离子可以用0.1 mol/L的硝酸进行洗脱,洗脱率在95 %以上.  相似文献   

5.
本文利用单宁可与金属离子形成稳定配合物的性质,以不同的单宁为模板,水热合成了纳米二氧化钛(T-NTO),用FT-IR,XRD,BET,SEM,TEM对合成的T-NTO的结构及形貌进行表征,并探究其对铀的吸附性能。结果表明,以单宁为模板水热法合成可以明显提高纳米二氧化钛的比表面积,从而提高其吸附容量;所制备的T-NTO对铀有较强的吸附能力,并且以不同单宁为模板制备的T-NTO对铀(UO22+)的吸附容量存在明显差异,杨梅单宁为模板合成的纳米二氧化钛(BT-NTO)粒径最小,比表面积达到96.61 m2/g;T-NTO对铀的吸附等温线符合Langmuir方程,BT-NTO在318K时对铀的吸附容量高达0.7054 mmol/g;而吸附动力学符合准二级动力学方程,吸附速率较快;共存阳离子Zn2+、Mg2+、Pb2+、Cu2+、Mn2+、Na+及共存阴离子Cl-、SO42-、CO32-对BT-NTO吸附铀的影响很小,而F-的影响较大,但可通过引入Al3+来减小F-的影响。解吸实验表明, 0.1 mol/L的HNO3溶液可使吸附的铀解吸下来,BT-NTO可多次重复使用。  相似文献   

6.
提出了采用自制的D401螯合树脂柱分离富集一电感耦合等离子体原子发射光谱(ICP—OES)法测定水中痕量Cu^2+、Pb^2+、Cd^2+的分析方法。探讨并确定了分离富集和仪器的最佳条件。试验表明,在优化的试验条件下Cu^2+、Pb^2+、Cd^2+可被D401螯合树脂柱定量吸附,可采用25mLl.5mol/L的HNO,溶液完全洗脱,动态饱和吸附容量分别为101.9、205.3、176.7mg/g,方法测定Cu^2+、Pb^2+、Cd^2+的检出限(3σ)分别为0.00041、0.00083、0.000361xg/mL,相对标准偏差(RSD,n=7)分别为2.3%、2.8%、3.1%,加标回收率在93.0%~104.0%之间,测定结果与电感耦合等离子体质谱法基本一致。  相似文献   

7.
纳米氧化铁应用于水中镉(Ⅱ)的吸附   总被引:1,自引:0,他引:1  
以原子吸收光谱法为检测手段,研究了新型纳米Fe2O3材料对水中Cd^2+的静态吸附性能,考察了影响吸附与解吸的主要因素。结果表明,在pH8.0-9.0范围内,纳米Fe2O3对Cd^2+具有较好的吸附效果,吸附率可达96%以上。采用0.5-3.0mol/LHNO3可将吸附于纳米Fe2O3上的Cd^2+定量洗脱。将纳米Fe2O3用于自来水样中低浓度隔的加标回收.结果较满意。  相似文献   

8.
采用较简单方法合成了光催化活性较低、吸附性能较好的纳米ZrO2及纳米Fe2O3,分别研究了两种纳米金属氧化物对Cr(Ⅵ)的吸附行为并进行了相应比较。结果表明,两种纳米金属氧化物对Cr(Ⅵ)的吸附酸度较宽,吸附效率较高,吸附时间短,吸附Cr(Ⅵ)后的纳米金属氧化物用2.0mol/L NaOH洗脱处理后均可重复使用,应用于环境水样中Cr(Ⅵ)的处理效果很好。  相似文献   

9.
刘洋  张彰  刘琳 《塑料工业》2007,35(10):11-14
采用ATRP法合成了一系列摩尔质量低(Mn=5×10^3~1×10^4g/mol)、分布窄(Mw/Mn=1.8~2.2)的聚苯乙烯(PS),通过均相催化溴化法制得一系列摩尔质量低、分布窄、溴含量不同的溴化聚苯乙烯(BPS),其中溴的质量分数最高可达75.59%,热分解温度达396℃。  相似文献   

10.
负载纳米TiO2降解室内甲醛的实验研究   总被引:1,自引:0,他引:1  
王淑勤  郝丽香 《化工时刊》2009,23(10):17-20
主要研究负载纳米TiO2对室内甲醛的降解情况。采用溶胶一凝胶法和粉体负载法来制备纳米TiO2,利用吸附床装置在紫外灯、日光灯照射下测定不同制备条件下的负载纳米TiO2的穿透时间(最长可达8h)和吸附容量(最高可达0.7193mg/g),结果表明粉体负载法制备的负载纳米TiO2吸附甲醛效果比溶胶一凝胶法制备的吸附效果好。因此确定了750℃负载纳米TiO2为最佳吸附剂。  相似文献   

11.
陈叶桐  权珍桢  汪卫  刘小林  王艳  陈擘威 《精细化工》2022,39(5):1004-1011,1019
以聚丙烯酸为原料,Zn2+和Mn2+为交联剂,环氧丙烷为促凝剂,采用溶胶-凝胶法制备了一系列锌/锰交联聚丙烯酸多孔聚合物(Zn/Mn/PAA),考察了Zn/Mn/PAA对铀酰离子(UO22+)的吸附性能,并探讨了吸附剂用量、pH、吸附时间、共存离子以及离子浓度对吸附性能的影响。结果表明,Zn2+和Mn2+物质的量比为1:1(交联剂总用量与聚丙烯酸物质的量比为10:1)时,所得样品Zn/Mn/PAA-2对UO22+的吸附性能最优。在pH=4.3,UO22+的初始质量浓度10 mg/L,吸附时间30 min,吸附剂用量为1 g/L,吸附温度25 ℃的优化条件下,Zn/Mn/PAA-2对UO22+的最大去除率为82.3%,吸附动力学符合准二级动力学模型。在其他金属离子存在时,Zn/Mn/PAA-2对UO22+的吸附具有选择性。在不同水样中Zn/Mn/PAA-2对UO22+的最大去除率可达82.8%。5次循环利用后,Zn/Mn/PAA-2对UO22+的去除率和解吸率仍然可分别达65%和72%。  相似文献   

12.
为提高磁性碱性钙基膨润土(magnetic alkaline Ca-bentonite,MACB)的吸附性能和磁稳定性,以壳聚糖和羧甲基纤维素钠的交联共聚膜(chitosan/sodium carboxymethyl cellulose copolymer film,CC)为改性剂,采用一步共沉淀法制备了CC改性的磁性碱性钙基膨润土MACB/CC(CC-modified magnetic alkaline Ca-bentonite,MACB/CC),对改性前后材料的结构特性进行分析,并进行MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附性能研究。研究结果表明,有机共聚膜CC已成功负载在MACB表面,有机改性后的MACB/CC具备更好的磁分离性能和磁稳定性;Cu(Ⅱ)和Mn(Ⅱ)在MACB/CC上的吸附是一个先快速而后缓慢的过程,吸附时间为60min时,MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附率已分别达到97%和85%;溶液的初始pH对MACB/CC吸附的影响明显,随着pH的升高,MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附率逐渐上升,在pH为7时对两种重金属的吸附率达到99%和92%;当Cu(Ⅱ)和Mn(Ⅱ)共存时,MACB/CC对Cu(Ⅱ)的吸附能力大于Mn(Ⅱ);经5次循环利用后,MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附率仍分别保持在93%和90%以上;MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附符合Langmuir模型,Langmuir吸附容量分别为94mg/g和38mg/g,吸附过程可由准二级动力学模型描述,说明控制吸附速率的主要是化学吸附;MACB/CC对Cu(Ⅱ)和Mn(Ⅱ)的吸附机理主要包括阳离子交换、表面沉淀和络合作用。总之,相对于MACB,经有机修饰的MACB/CC具有更好的吸附性能、磁稳定性和磁分离能力,是一种非常有应用前景的重金属废水吸附材料。  相似文献   

13.
金博艳 《化学世界》2012,53(2):82-84
探讨了硝酸镍对石墨炉吸收法测定食品中铅的基体改进作用。实验表明:在200mg/L硝酸镍的基体改进剂存在下,仪器信号灵敏度提高3倍;在最佳测试条件下,铅特征质量为4.1pg/0.0044A,检出限为0.001mg/kg;12.5ng/mL铅标准溶液11次测定的RSD为1.2%;10μg/mL的Ca、Cd、Cr、Cu、Fe、K、Zn、Mg、Mn和Sn对12.5ng/mL铅标准溶液的测定无干扰作用。该法克服了国家标准《GB 5009.12-2010食品中铅的测定》第一法石墨炉原子吸收光谱法信号灵敏度低、稳定性差、重复性低等缺点。  相似文献   

14.
以膨润土和活性炭为原料制备了复合吸附剂并将之应用于含锰离子废水的吸附。考察了不同条件下该吸附剂对水体中Mn(Ⅱ)的去除效果,并研究了吸附动力学特征和等温吸附过程。结果表明膨润土和活性炭复合吸附剂对Mn(Ⅱ)具有优良的吸附能力,在25 ℃下,当投加量为4 g/L、Mn(Ⅱ)初始质量浓度为50 mg/L、溶液pH为6时,吸附180 min,吸附率为93.2%。准一级、准二级动力学和内扩散模型用来拟合吸附过程,结果表明准二级动力学符合该吸附过程,吸附速率常数为0.003 6 g/(mg·min),内扩散过程不是吸附的限速步骤,还存在吸附机制的制约。用Langmuir和Freundlich模型描述吸附等温过程,结果得出该吸附过程服从Langmuir吸附,饱和吸附容量为27.781 mg/g。  相似文献   

15.
为探讨硫酸对蜂巢石吸附材料改性的影响因素,以及改性蜂巢石对Mn~(2+)的吸附特性,采用正交试验法研究了硫酸改性条件对蜂巢石比表面积、孔容、孔径的影响;对改性蜂巢石和未改性蜂巢石做了SEM和XRD对比分析;通过静态吸附试验探讨了硫酸改性蜂巢石对Mn~(2+)的最佳吸附条件。试验结果表明,硫酸浓度为0.50mol/L,改性时间为30 min,温度为35℃时改性最佳,改性后蜂巢石比表面积、孔容分别达到21.15 m2/g、0.053cm3/g左右,平均孔径为5 nm;SEM和XRD对比分析发现,改性后蜂巢石表面变得粗糙蓬松,微孔增加,空隙率和孔道通透性提高,出现了Ca SO4·2H2O单斜晶体;改性蜂巢石投加量和溶液的p H值是影响吸附效果的重要因素,当溶液p H值为5,改性蜂巢石投加量为4 g/L,Mn~(2+)初始质量浓度为5 mg/L时,对Mn~(2+)的去除率达85%以上,吸附量超过10.0 mg/g。  相似文献   

16.
宋祥  庹必阳  赵徐霞  向海春 《精细化工》2019,36(12):2482-2490
以钠基蒙脱石(Na-MMT)、钛酸四丁酯作基质材料,通过溶胶-凝胶法制备了钛柱撑蒙脱石(Ti-MMT)。利用XRD、FTIR及SEM对Ti-MMT进行了结构表征,考察了不同吸附条件对Ti-MMT吸附Ni~(2+)和Mn~(2+)的影响,并重点分析水溶液pH对Ti-MMT Zeta电位及吸附的影响,探究了Ti-MMT吸附Ni~(2+)和Mn~(2+)的机理。结果表明:Ti-MMT具有较大的晶面间距(d001=2.94 nm);pH对吸附Ni~(2+)与Mn~(2+)有较大影响,去除率随初始水溶液pH增加而提高。在pH=7,Ni~(2+)和Mn~(2+)初始质量浓度为50 mg/L,Ti-MMT投加量分别为5和9 g/L时,Ni~(2+)在318 K下吸附120 min,吸附量可达9.46 mg/g,去除率可达94.59%,Mn~(2+)在328 K下吸附180 min,吸附量可达4.82mg/g,去除率可达86.73%。此外,Ti-MMT对两种离子的吸附都更符合Temkin等温吸附模型及拟二级动力学模型,吸附过程受液膜扩散、颗粒内扩散等环节控制,且以离子交换的化学吸附为主。热力学分析表明,Ti-MMT对Ni~(2+)的吸附属于自发吸热熵增过程,而Mn~(2+)属于吸热熵增的非自发过程。  相似文献   

17.
通过静电纺丝制备了锂离子筛负载纳米纤维。研究了聚丙烯腈(PAN)和锂锰氧化物(Li1.6Mn1.6O4)配比对纳米纤维锂离子筛吸附剂提锂性能的影响。采用扫描电镜(SEM)和BET氮气吸附法对纳米纤维锂离子筛吸附剂的形貌和比表面积进行了表征。实验结果表明,在聚丙烯腈质量分数为7%和Li1.6Mn1.6O4质量分数为10%条件下,制得的纳米纤维锂离子筛吸附剂比表面积较大、提锂性能较好,其在质量浓度为10 mg/L的氯化锂溶液中对锂离子的吸附量可达13.6 mg/g。纳米纤维锂离子筛吸附剂克服了粉末状锂离子筛的不足,对实现海水提锂具有重要的参考价值。  相似文献   

18.
《分离科学与技术》2012,47(16):2399-2407
A new phenol–formaldehyde based chelating resin containing 4-(2-thiazolylazo) resorcinol (TAR) functional groups has been synthesized and characterized by Fourier transform infrared spectroscopy and elemental analysis. Its adsorption behavior for Cu(II), Pb(II), Ni(II), Co(II), Cd(II), and Mn(II) has been investigated by batch and column experiments. The chelating resin is highly selective for Cu(II) in the pH range 2 ~ 3, whereas alkali metal and alkaline earth metal ions such as Na(I), Mg(II), and Ca(II) are not adsorbed even at pH 6. Quantitative recovery of most metal ions studied in this work except Co(II) is achieved by elution with 2M HNO3 at a flow rate of 0.2 mL min?1. A similar trend is observed for distribution coefficient values. The quantitative separations achieved on a mini-column of chelating resin include Cd(II) – Cu(II), Mn(II) – Pb(II), Co(II) – Cu(II), Mn(II) – Ni(II), and Mn(II) – Co(II) – Cu(II). The recovery of copper(II) is quantitative (98.0–99.0%) from test solutions (10–50 mg/L) by 1 mol/L HNO3-0.01 mol/L EDTA. The chelating resin is stable in acidic solutions below 2.5 M HNO3 or HCl as well as in alkaline solution below pH 11. The adsorption behavior of the resin towards Cu(II) was found to follow Langmuir isotherm and second order rate.  相似文献   

19.
以钠基膨润土为原料,制备了铁钛无机交联膨润土,应用于模拟废水的处理。以对COD的去除率为指标,利用正交试验研究制备铁钛无机交联膨润土的最佳实验条件及其吸附模拟废水的最佳实验条件。结果表明:铁钛无机交联膨润土对COD表现出较好的吸附性能。当悬浮液浓度为3%、铁钛摩尔比为16:1、交联剂/土(mmol/g)为15:1、反应温度为40℃、反应时间为3h为制备的最佳实验条件。当废水pH值为3.0、吸附剂用量为14g/L、吸附时间为30min时,为吸附模拟废水的最佳实验条件,此时COD的去除率可达90%以上。  相似文献   

20.
采用氧化法和正硅酸乙酯水解法制备了Mn3O4@SiO2核壳结构磁性纳米材料,研究了其对水溶液中Mo(VI)离子的吸附效果。运用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱仪(IR)及磁强计(VSM) 等多种手段对Mn3O4@SiO2核壳磁性复合材料进行了表征,并研究了溶液的初始pH、Mo(VI)离子初始浓度和温度对Mo(VI)吸附量的影响。结果表明:在298 K条件下Mn3O4@SiO2核壳结构磁性复合材料对Mo (VI)的饱和吸附量为145.35 mg/g; Mn3O4@SiO2对Mo (VI)的吸附过程符合Langmuir等温吸附模型,吸附动力学符合准二级动力学模型;吸附热力学分析表明Mn3O4@SiO2复合材料对Mo (VI) 的吸附行为是自发的、放热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号