首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work, dynamic analysis and control of a packed distillation column have been utilized theoretically and experimentally. In theoretical studies, two types of mathematical models stagewise (Frank model) and partial differential approaches (back-mixing model), were used. Packed distillation uses 1400 mm packing height, and packing type is rashing ring with 20-15 mm diameter. The reboiler was made from a 13 L glass container. Reflux ratio was adjusted by an on-line computer. The system temperature was measured with six thermocouples. For control studies, the reflux ratio and the reboiler heat dutywere chosen as manipulated variables. Perturbation in feed composition was utilized as the disturbance. Decoupling multivariable dynamic matrix control (DDMC) and Nondecoupling multivariable dynamic matrix control (NDMC) of overhead and bottom compositions were applied for control studies. Performance of the control system was tested by using an integral absolute error (IAE) criterion and it was also compared with decoupling multivariable PID control (DPID) and Nondecoupling multivariable PID control (NDPID).  相似文献   

2.
Computational fluid dynamics as a simulation tool allows obtaining a more detailed view of the fluid flow and heat transfer mechanisms in fixed-bed reactors, through the resolution of 3D Reynolds averaged transport equations, together with a turbulence model when needed. In this way, this tool permits obtaining of mean and fluctuating flow and temperature values in any point of the bed. An important problem when modeling a turbulent flow fixed-bed reactor is to decide which turbulence model is the most accurate for this situation. To gain insight into this subject, this study presents a comparison between the performance in flow and heat transfer estimation of five different RANS turbulence models in a fixed bed composed of 44 homogeneous stacked spheres in a maximum space-occupying arrangement in a cylindrical container by solving the 3D Navier-Stokes and energy equations by means of a commercial finite volume code, Fluent 6.0®. Air is chosen as flowing fluid. Numerical pressure drop, velocity and thermal fields within the bed are obtained. In order to judge the capabilities of these turbulence models, heat transfer parameters (Nuw, kr/kf) are estimated from numerical data and together with the pressure drop are compared to commonly used correlations for parameter estimations in fixed-bed reactors.  相似文献   

3.
Experimental results from a high-density circulating fluidized bed (CFB) riser have been used to develop new closure models for the drag coefficient and the gas-solid mixture viscosity. The models predict a rapid increase in both viscosity and drag associated with the high solids concentrations near the riser wall. These new models have been incorporated into the commercial Computational Fluid Dynamics software FLUENT and the predictions of FLUENT have been compared with experimental data from the literature. With the inclusion of the new closure models, FLUENT was able to predict the radial distribution of solids concentration and solids mass flux found experimentally in three different cold-flow CFB risers operated at solids mass fluxes between 148 kg/m2·s and 455 kg/m2·s and superficial gas velocities between 4.7 and 10 m/s. These conditions lead to average solid concentrations in excess of 10 vol%, which corresponds to high-density CFB operation.  相似文献   

4.
Compared to the traditional lumped-parameter model,computational fluid dynamics (CFD) attracted more attentions due to facilitating more accurate reactor design and optimization methods when analyzing the heat transfer in the industrial packed bed.Here,a model was developed based on the CFD theory,in which the heterogeneous fluid flow was resolved by considering the oscillatory behavior of voidage and the effective fluid viscosity.The energy transports in packed bed were calculated by the convection and diffusion incorporated with gaseous dispersion in fluid and the contacting thermal conductivity of packed particles in solids.The heat transfer coefficient between fluid and wall was evaluated by considering the turbulence due to the packed particles adjacent to the wall.Thus,the heat transfer in packed bed can be predicted without using any adjustable semi-empirical effective thermal conductivity coefficient.The experimental results from the literature were employed to validate this model.  相似文献   

5.
Volatile organic compounds (VOCs) cause nuisance to humans and the environment. Recent legislation encourages industrialists to set up equipment for treating their VOC-loaded gaseous effluents. This piece of research studies the absorption process, using a viscous organic absorbent (di(2-ethylhexyl) adipate=DEHA) to treat a toluene-loaded vent gas, in terms of hydrodynamics and mass transfer. It is shown that DEHA does not lead to an excessive pressure drop. Correlations predicting hydrodynamic parameters from previous literature are summarised and tested against experimental results. It is shown that acceptable prediction accuracy can be achieved for counter-current pressure drop and liquid hold-up. Treatment efficiency for the toluene-loaded vent gas is shown to be very good. Calculation of mass transfer constants (kLa) enables to test literature correlations against the experimental results. The mass transfer is supposed to be limited by the liquid-side resistance. Our experimental results showed that the kLa of the system depends on the liquid velocity but also on the gas velocity. This behaviour has also been observed by the few authors who have used viscous fluids in their experiments, but is contrary to all the authors who have work on low-viscosity fluids. It is therefore clear that the influence of viscosity on the phenomenon is considerable. Not one current correlation is currently accurate in the case of a viscous absorbent.  相似文献   

6.
华敏  张庆文  洪厚胜 《化工时刊》2005,19(10):34-36
在概述喷射泵的分类、工作原理及运行特性的基础上,综述了CFD技术在喷射泵研究中的进展情况.同时指出了以往数值模拟研究存在的问题,并就以后的研究工作进行了展望.  相似文献   

7.
Adsorptive removal of organosulfur compounds, lumped as total sulfur content, from a real diesel fuel was carried out in a packed bed adsorber. A novel approach was taken in the application of theoretical solutions to the differential mass balance equation using modern software tools, and one classic method as point of reference. Adsorptive desulfurization is a perspective downstream process to hydrodesulfurization for achieving sulfur concentration levels of less then 10 mg kg−1. Compared to the conventional hydrodesulfurization process, the deep desulfurization can be accomplished without changing the physical properties of the product and at relatively low temperature and pressure. The adsorber apparatus comprised computer control, enabling completely automated operation. Adsorbent was activated carbon SOLCARB C from Chemviron Carbon, Belgium. The experimental results regarding the influence of flow rate and bed depth on the outlet sulfur concentration were evaluated as well as the models ability to describe the adsorption kinetics and to estimate the breakthrough curves. Ultra deep desulfurization of diesel fuel was achieved and it was determined that outlet sulfur concentration was being lowered by decreasing flow rate and increasing bed depth. The closest fit to the experimental data was achieved for the Bohart-Adams model.  相似文献   

8.
脉动流化床的数值模拟   总被引:1,自引:0,他引:1  
运用Fluent 6.3中的欧拉-欧拉模型模拟传统流化床与锯齿形波脉动进气流化床的运动特性,并进行对比,针对沿床高的气泡高度、当量直径及内压等因素进行分析,得出脉动锯齿形波进气流化效果比传统流化效果明显提高。  相似文献   

9.
CFD analysis of air distribution in fluidised bed equipment   总被引:1,自引:0,他引:1  
The unique features of the fluidised bed—excellent mixing capacity and high heat and mass transfer rates—are highly dependent on the quality of fluidisation resulting from the bubble characteristics of the fluidising gas, which to a large extent depend on the distributor design. In order to understand the fluidisation hydrodynamics of a fluidised bed operation, it is essential to assess how airflow is distributed through the equipment. This paper reports on the use of Computational Fluid Dynamics (CFD) as a numerical tool to enlarge this understanding. CFD simulations were performed for a Glatt GPCG-1 fluidised bed coater in which stainless steel woven wire mesh distributors are used as the standard distributor plates. Firstly, an experiment was set up in which the permeability and the inertial resistance of the investigated distributors were determined. Using these inputs, two types of boundary conditions, available in the CFD software Fluent, to model a porous medium such as a distributor, were compared. Furthermore, the CFD simulations were verified in the lab-scale fluidised bed unit using air mass flow rate, pressure drop and inner wall temperature recordings. As an unequal airflow inside the plenum of the GPCG-1 was found to occur, CFD was used as a design tool to investigate reactor configuration changes in order to obtain a more homogeneous airflow towards the distributor.  相似文献   

10.
Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation. Comprehensive investigation on the reutilization of waste heat of activated coal fly ash is of great economic significance. The method of recovering the waste heat, proposed in this study,is the transfer of heat from activated coal fly ash to gas with the movement of air using the packed bed, providing valuable energy sources for preheating the raw coal fly ash to reduce the overall energy consumption. The investigation is carried on the heat transfer characteristics of gas–solid(activated coal fly ash) phases and air temperature fields of the packed bed under some key conditions via computational fluid dynamics. A two dimensional geometry is utilized to represent key parts of packed bed. The distribution mechanism of the temperature field for gas phase is analyzed based on the transient temperature contours at different times. The results show that the obtained rule of gas–solid heat transfer can effectively evaluate the influences of operating parameters on the air temperature in the packed bed. Simultaneously, it is found that no temperature differences exist in the hot air at the outlet of the packed bed. The investigation provides guidance for the design and optimization of other similar energy recovery apparatuses in industries.  相似文献   

11.
Reactive extraction of lactic acid was performed continuously in a packed column. The 0.6 M trioctylamine (TOA)/l-chlorobutane system was used as an extradant. The initial concentration of lactic acid was 10 wt% based on fermentation results. Raschig rings (5 and 7 mm diameter) were used to measure hydrodynamic data. Disperse phase holdup was nearly constant at Vd<0.8Vd,f.It can be seen that the flooding data obtained from this study were consistent with the literature. NTU and HTU were calculated. NTU varied from 1 to 2 and HTU from 96 cm to 44 cm with variation of Vd. The overall mass transfer coefficients of the continuous phase were nearly constant to 8.98x 10-5 mol/cm2s with variation of Vd.  相似文献   

12.
Computational fluid dynamics (CFD) has proven to be a reliable tool for fixed bed reactor design, through the resolution of 3D transport equations for mass, momentum and energy balances. Solution of these equations allow to obtain velocity and temperature profiles within the reactor. The numerical results obtained allow estimating useful parameters applicable to equipment design. Particle-to-fluid heat transfer coefficient is of primal importance when analyzing the performance of a fixed bed reactor. To gain insight in this subject, numerical results using a modified commercial CFD solver are presented and particle-to-fluid heat transfer in fixed beds is analyzed. Two different configurations are studied: forced convection at low pressure (with air as circulating fluid) and mixed (i.e., free+forced) convection at high pressure (with supercritical CO2 as circulating fluid). In order to impose supercritical fluid properties to the model, modifications into the CFD code were introduced by means of user defined functions (UDF) and user defined equations (UDE). The obtained numerical data is compared to previously published data and a novel CFD-based correlation (for free, forced and mixed convection at high pressure) is presented.  相似文献   

13.
This work investigates the feasibility of applying the cross-flow rotating packed bed (RPB) to the removal of carbon dioxide (CO2) by absorption from gaseous streams. Monoethanolamine (MEA) aqueous solution was used as the model absorbent. Also, other absorbents such as the NaOH and 2-amino-2-methyl-1-propanol (AMP) aqueous solutions were compared with the MEA aqueous solution. The CO2 removal efficiency was observed as functions of rotor speed, gas flow rate, liquid flow rate, MEA concentration, and CO2 concentration. Experimental results indicated that the rotor speed positively affects the CO2 removal efficiency. Our results further demonstrated that the CO2 removal efficiency increased with the liquid flow rate and the MEA concentration; however, decreased with the gas flow rate and the CO2 concentration. Additionally, the CO2 removal efficiency for the MEA aqueous solution was superior to that for the NaOH and AMP aqueous solutions. Based on the performance comparison with the conventional packed bed and the countercurrent-flow RPB, the cross-flow RPB is an effective absorber for CO2 absorption process.  相似文献   

14.
The pressure drop and liquid hold-up for the G-L cross/counter-current flow in a packed column with a novel internal was simulated using a Eulerian/Eulerian two-fluid model solved by a commercial CFD software CFX4.4. Simulation results are in good agreement with the experimental data of pressure drop. The internal significantly increases the gas radial velocity and lower the gas axial velocity, which lowers the pressure drop and improves operational flexibility. To minimize bypass flow caused by the internal, optimum baffle thickness and width of the internal's passage are proposed.  相似文献   

15.
When a high velocity gas jet is introduced into a packed bed a cavity is formed. The size of the cavity shows hysteresis on increasing and decreasing gas flow rates. This hysteresis leads to different cavity sizes at same gas flow rate depending on the bed history. The size of cavity affects the gas flow profiles in the packed bed. In this study the cavity size hysteresis phenomenon has been modeled using discrete element method along with turbulent gas flow. A reasonable agreement has been found between computed and experimental results on cavity size hysteresis. The effect of various parameters, such as nozzle height from the bed bottom and packing height, on the cavity size hysteresis has been studied. It is found that inter-particle interaction forces along with gas drag and bed porosity play an important role in describing the cavity size hysteresis. The injection of gas flow allows the particles to go to an unconstrained state than they were previously in, and their ability to remain in that state, even under decreased gas drag force, leads to the phenomenon of cavity size hysteresis.  相似文献   

16.
自20世纪60年代肼类化学单组元推力器诞生以来,液体单组元推进技术在卫星轨控、火箭姿态调整和应急动力系统中得到了广泛应用。化学单组元推进技术关键是高能液体化学推进剂在颗粒固定床内催化分解反应过程。由于其化学反应过程的复杂性,目前该类推进技术开发不考虑化学反应工程本质,以热能和空气动力学工程理论为基础,通过大量耗时耗力推力器热实验完成。本工作从化学反应工程角度出发,论述了化工热力学、催化反应动力学、单颗粒催化剂内扩散?反应、催化剂纳微孔道内流体?反应以及在固定床宏观多孔介质中和颗粒堆积形成的介观复杂几何结构内流动?传递?反应的耦合理论,且在化学单组元推进系统中推进剂能量设计,催化剂结构和催化分解固定床设计中的应用。本工作给出了单组元推进技术中相关催化反应工程理论基础,有望为新型绿色化学单组元推进技术的开发提供推进剂配方,为催化剂合成以及分解固定床的设计提供理论基础。  相似文献   

17.
The use of biodiesel as an alternative to diesel has gained increasing momentum over the past 15 years. To meet this growing demand there is a need to optimise the transesterification reactor at the heart of the biodiesel production system. Assessing the performance of innovative reactors is difficult due to the liquid–liquid reaction mixture that is affected by mass transfer, reaction kinetics and component solubility. This paper presents a Computational Fluid Dynamic model of a tubular reactor developed in ANSYS CFX that can be used to predict the onset of mixing via turbulent flow. In developing the model an analysis of the reaction mixture is provided before the presentation of experimental data, which includes flow visualisation results and temperature dependant viscosity and density data for each phase. The detailed data and model development procedure represents an advancement in the modelling of the two phase transesterification reaction used in biodiesel production.  相似文献   

18.
A theoretical model has been derived in an electrophoretic packed column where an electric potential is applied to a column in the axial direction. The effect of electrophoretic convection in gel particles packed in the column significantly contributes to the separation of large polyelectrolytes because the conformation of polyelectrolyte quickly orients in the field direction. The dependence of the transport in the gel particle upon field intensity and molecular size aids in understanding the transport of polyelectrolyte in the packed column, since the convective velocity of polyelectrolyte is accelerated inside a porous gel particle. There are few convection studies of large poly-electrolyte in a column packed with porous gel particles under an electric field for the separation. Convective-diffusive transport of a large polyelectrolyte is analyzed using Peclet number described by electrophoretic mobility and diffusion coefficient measured experimentally. The separation of two different polyelectrolytes in the packed column is performed using a value ofPe f/Peg of individual polyelectrolyte by molecular size and an electric field. The purpose of this paper is to study the separation of solute from a mixture in the column using the physicochemical properties in the gel particle which are measured experimentally.  相似文献   

19.
The robustness, reliability and efficiency of modern numerical methods for obtaining solutions to flow problems have given rise to the adoption of Computational Fluid Dynamics (CFD) as a widely used analysis tool for membrane separation systems. In the past decade, many two-dimensional (2D) flow studies employing CFD have been published. Three-dimensional (3D) solutions are also slowly emerging. This paper reviews recent research utilizing 3D CFD models to simulate the flow conditions in narrow spacer-filled channels, such as those encountered in Spiral Wound Membrane (SWM) modules. Many of these studies have focused on optimizing spacer geometric parameters, while others have attempted to gain a better understanding of the mechanisms giving rise to mass transfer enhancement. Applications of 3D CFD to complex spacer geometries and multiple ionic component diffusion are also discussed.  相似文献   

20.
In this paper, particle size effect on pinewood combustion in a stationary packed bed was investigated. Mass loss rate, temperature profile at different bed locations and gas compositions in the out-of-bed flue gases were measured at a fixed primary air flow rate. Pinewood cubes was fired with size ranging from 5 to 35 mm. A unique numerical model applicable to thermally thick particles was proposed and relevant equations were solved to simulate the non-homogeneous characteristics of the burning process. It is found that at the operating conditions of the current study, smaller particles are quicker to ignite than larger particles and have distinctive combustion stages; burning rate is also higher with smaller fuel size; and smaller fuels have a thinner reaction zone and result in both higher CO and CH4 concentrations in the out-of-bed flue gases; on the other hand, larger particles produced a higher flame temperature and result in higher H2 concentration in the flue gases. Larger particles also cause the combustion process becoming more transient where the burning rate varies for most part of the combustion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号