The application of static high pressure provides a means to precisely control and investigate many fundamental and unique properties of nanoparticles. CdSe is a model quantum-dot system, the behavior of which under high pressure has been extensively studied; however, the effect of nonuniform stresses on this system has not been fully appreciated. Photoluminescence data obtained from CdSe quantum-dot solids in different stress environments varying from purely uniform to highly nonuniform are presented. Small deviations from a uniform stress distribution profoundly affect the electronic properties of this system. In nonuniform stress environments, a pronounced flattening of the photoluminescence enegy is observed above 3 GPa. The observations are validated with theoretical calculations obtained using an all-atom semiempirical pseudopotential technique. This effect must be considered when investigating other potentially pressure-mediated phenomena. 相似文献
Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non‐radiative charge recombination that significantly reduces device performance. Here a facile post‐synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near‐complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. This process also dramatically improves the air‐stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air‐exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours. 相似文献
The dimension-controlled synthesis of CdS nanocrystals in the strong quantum confinement regime is reported. Zero-, one-, and two-dimensional CdS nanocrystals are selectively synthesized via low-temperature reactions using alkylamines as surface-capping ligands. The shape of the nanocrystals is controlled systematically by using different amines and reaction conditions. The 2D nanoplates have a uniform thickness as low as 1.2 nm. Furthermore, their optical absorption and emission spectra show very narrow peaks indicating extremely uniform thickness. It is demonstrated that 2D nanoplates are generated by 2D assembly of CdS magic-sized clusters formed at the nucleation stage, and subsequent attachment of the clusters. The stability of magic-sized clusters in amine solvent strongly influences the final shapes of the nanocrystals. The thickness of the nanoplates increases in a stepwise manner while retaining their uniformity, similar to the growth behavior of inorganic clusters. The 2D CdS nanoplates are a new type of quantum well with novel nanoscale properties in the strong quantum confinement regime. 相似文献
In-situ observation of the temporal evolution of the absorption of PbSe nanocrystals (NCs) via a low-temperature noninjection approach is presented. Based on a model reaction of lead oleate (Pb(OA)(2) ) and n-trioctylphosphine selenide (TOPSe) in 1-octadecene at 35-80 °C, the use of commercially available TOP (90 or 97%) in affecting the formation of the NCs is explored. TOPSe solutions made from TOP 90% exhibited higher reactivity than those made from TOP 97%. (31)P NMR spectroscopy detected no dioctylphosphine selenide (DOPSe) but some DOP in ≈1.0 M TOPSe/TOP solution (made from TOP 90%), as well as no diphenylphosphine selenide (DPPSe) when DPP was added to the ≈1.0 M solution. Hence, it is proposed that, for the formation of PbSe monomers, an indirect pathway dominates with the formation of a Pb-P complex/intermediate, which results from the activation of Pb(OA)(2) by a phosphine compound (such as DPP, DOP, or TOP) and in turn reacts with TOPSe. With the use of TOP 90% and the addition of secondary phosphine DPP, the formation of PbSe magic-sized nanoclusters (MSNCs) and regular NCs (RNCs) is investigated. With proper tuning of the synthesis conditions, the formation of various PbSe MSNCs versus RNCs is monitored in situ with versus without the addition of DPP, or at different reaction temperatures but otherwise identical synthetic formulation and reaction parameters. Accordingly, the degree of supersaturation (DS) of the PbSe monomer affecting the development of these PbSe MSNCs versus RNCs is proposed; the higher the DS, the more the MSNCs are favored. Also, surface-determined cluster-cluster aggregation is proposed to be the growth mechanism for both the RNCs and MSNCs. For the former, quantized growth is followed by continuous growth. For the latter, the sizes of the magic-sized families are calculated. 相似文献
Synthesis of uniform nanocrystals is very important because the size uniformity of an ensemble of nanocrystals is directly related to the homogeneity of their chemical and physical properties. Classical theory suggests that burst nucleation and diffusion-controlled growth are the most important factors for the control of the size distribution in colloidal synthesis. In the last two decades, the numerous reports on the synthesis of uniform nanocrystals have popularized two major synthetic methods, namely, hot-injection and heat-up, to obtain uniform nanocrystals of various materials including metals, semiconductors, and oxides. Mechanistic studies on how such uniform nanocrystals are obtained in those two methods are reviewed and theoretical explanations are provided in the current review. 相似文献
Type II and quasi-type II nanocrystals with thick shells exhibit reduced blinking. However, after a number of monolayers, the influence of the shell thickness is found to vanish. Using a two-band Kane Hamiltonian, it is shown that this behavior is a consequence of interband coupling and asymmetric confinement of electrons and holes. Interface alloying provides an additional, order-of-magnitude contribution to the Auger suppression, in agreement with recent experiments. The existence is predicted of critical shell thicknesses that strongly quench Auger processes for any core size. 相似文献
The microscopic origin of the bright nanosecond blue‐green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si‐QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl‐terminated Si‐QDs of 2–3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano‐object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron–hole pairs confined in the Si‐QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si‐QDs with tunable sizes and bandgaps. 相似文献
White light generation is achieved by single-step co-doping of copper and manganese into the robust ZnSe quantum dots (QDs) which were synthesised using a wet chemical route. Photoluminescence (PL) emission spectra revealed three peaks related to blue (ZnSe), green (copper related) and orange (manganese related). The PL spectra indicated no surface and/or trap state related emission. Photoluminescence excitation (PLE) measurements confirmed co-doping of copper and manganese in the same QD. PLE spectra recorded with emission wavelength fixed at copper and manganese showed a band edge at the same position, indicating the incorporation of both copper and manganese in the same QD. Time-resolved PL measurements suggest an atomic like nature of Mn and Cu in ZnSe QDs. 相似文献
Colloidal core/shell nanocrystals contain at least two semiconductor materials in an onionlike structure. The possibility to tune the basic optical properties of the core nanocrystals, for example, their fluorescence wavelength, quantum yield, and lifetime, by growing an epitaxial‐type shell of another semiconductor has fueled significant progress on the chemical synthesis of these systems. In such core/shell nanocrystals, the shell provides a physical barrier between the optically active core and the surrounding medium, thus making the nanocrystals less sensitive to environmental changes, surface chemistry, and photo‐oxidation. The shell further provides an efficient passivation of the surface trap states, giving rise to a strongly enhanced fluorescence quantum yield. This effect is a fundamental prerequisite for the use of nanocrystals in applications such as biological labeling and light‐emitting devices, which rely on their emission properties. Focusing on recent advances, this Review discusses the fundamental properties and synthesis methods of core/shell and core/multiple shell structures of II–VI, IV–VI, and III–V semiconductors.
Nanocrystals (NCs) of CsPbX3, X = Cl, Br, or I, have excellent photoluminescent properties: high quantum yield, tunable emission wavelengths (410−700 nm), and narrow emission band widths. CsPbBr3 NCs show high promise as a green-emitting material for use in wide color gamut displays. CsPbBr3 NCs have, however, not been commercialized because they are sensitive to moisture and heat. To avoid these problems, this work attempts to introduce CsPbBr3 into five zeolites. The zeolite X product, Pb,Br,H,Cs,Na−X, shows superior stability toward moisture, maintaining its initial luminescence properties after being under water for more than a month. Its structure, determined using single-crystal X-ray crystallography, shows that quantum dots (QDs) of [Na4Cs6PbBr4]8+ (not of CsPbBr3) have formed. They are tetrahedral PbBr42− ions (Pb−Br = 3.091(11) Å) surrounded by Na+ and Cs+ ions. Each fills the zeolite's supercage with its Pb2+ ion precisely at the center, a position of high symmetry. The peaks in the emission spectra of Pb,Br,H,Cs,Na−X and the CsPbBr3 NCs are both at about 520 nm. The FWHM of Pb,Br,H,Cs,Na−X, however, is narrower than any previously reported for any of the CsPbBr3 NCs, and for zeolite Y and the various mesoporous materials treated with CsPbBr3. 相似文献