首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superconducting properties of iodine-intercalated high-temperature superconducting Bi2Sr2Ca2Cu3O10+x phase (Bi-2223) were systematically studied. It was found that for samples containing a significant amount of Bi2Sr2CaCu2O8+x , iodine intercalation results in the dramatic decrease of the inter-granular critical current density, as well as a significant decrease of the critical temperature (T c), the critical current density in the grains (J cg), and of the amount of Bi-2223. For samples with a large amount of Bi-2223, T c changes insignificantly, whereas J cg can even increase. We argue that the different behavior of the superconducting parameters is the result of various oxygen concentrations, and we explain the effect of iodine intercalation based on the parabolic dependence between T c and the number of holes per CuO2 layer. The H(T) curves (determined from the peak position in the loss signal of ac susceptibility) for intercalated samples deviate significantly from the quasi 2D-like behavior, pointing toward an enhancement of the 3D fluctuations of vortices. For the change in the values and dimensionality of the flux pinning in the process of the intercalation, we attempted a qualitative explanation based on the models proposed in literature.  相似文献   

2.
Superconducting transition temperature (T c) as a function of oxygen concentration for hexagonal rubidium tungsten bronzes Rb x WO y with 2.80 ≤ y ≤ 3.07 and x = 0.19, 0.23, and 0.27 has been systematically investigated. Three regions corresponding to T c < 2 K (denoted as superconductivity suppressed region), T c∼ 3 K (superconductivity uniform region) and T c > 3 K (superconductivity enhanced region) were identified in T cy phase diagram for Rb0.19WO y and Rb0.23WO y . No superconductivity enhanced region was observed for Rb0.27WO y . The superconductivity suppressed region shifts toward higher oxygen content as rubidium concentration increases. The local ordering of the intercalated rubidium atoms might be responsible for the intriguing T cy phase diagram of Rb x WO y .  相似文献   

3.
We present dielectric properties of ceramic anhydrous Na0.7CoO2 and the superconducting Na0.3CoO2·1.3H2O materials. The presence of water which induces superconductivity also may increase the dielectric constant (ε) of the hydrated material. This is consistent with the predicted relationship between the highε and the enhancement ofT c in highT c superconductors. The anhydrous sample is porous and the transport is due to some percolation via the pores. The porosity is much higher for the hydrated material and the transport is ionic inside bulk water.  相似文献   

4.
The electronic and magnetic properties of Mn1−x Cr x Te of NiAs-type and zinc-blend type structures are theoretically investigated using the first-principles KKR-CPA method. It is concluded that at low concentration region of Cr, an antiferromagnetic state is the ground-state, while a ferrimagnetic state is more stable at higher concentration region of Cr in the both types of structures. In particular, a new type of half-metallic ferrimagnets is found in zinc-blend type Mn1−x Cr x Te. On the other hand, a nearly half-metallic behavior is observed in NiAs-type Mn1−x Cr x Te, where the Fermi level locates slightly above the minority spin band gap. The features of the half-metallicity of Mn1−x Cr x Te in zinc-blend structure are also seen in the results of the conductivity calculations using the Kubo–Greenwood formula.  相似文献   

5.
Pellets of ceramic Na1−xKxNbO3 (x = 0, 0.2 and 0.5), were prepared by conventional solid-state reaction method. Prepared samples were characterized using XRD and SEM. The frequency and temperature variation of dielectric constant, loss tangent and dielectric conductivity of prepared samples were measured in the frequency range from 10 KHz-1 MHz, and in the temperature range from 50–250°C for x = 0.2 and 0.5, and between 50 and 480°C for x = 0 compositions. It was observed that the dielectric constant and loss tangent decrease, and conductivity increases with increasing frequency. Near the transition temperature the material shows anomalous behaviour for the observed properties, and the peaks of dielectric constant and loss tangent were observed shifting towards lower temperature with increasing frequency.  相似文献   

6.
The structure of ZrO2 powders prepared by dehydration of zirconium hydroxide and milling (including techniques with the introduction of grinding additives, such as NaF, CaF2, diamond, and Cu) was investigated using x-ray powder diffraction and Raman spectroscopy. Samples containing crystallites with the smallest size were synthesized in the presence of copper additives. Ceramic powders of the composition Zr0.88Sc0.1Ce0.01Y0.01O1.955 with an improved quality for the use as solid electrolytes in fuel cells were prepared by the mechanochemical synthesis from nanoprecursors and then were characterized. An analysis of the X-ray powder diffraction patterns revealed that the symmetry of the structure of strongly aggregated nanopowders of metastable zirconia increases as a result of twinning, which is favored by a high concentration of vacancies.  相似文献   

7.
This paper examines the formation of arrays of interlayer nanostructures in layered crystals grown by directional solidification and the Bridgman method. Sb2Te3 and Bi2Te3 layers are shown to contain steplayered structures with nanostructured islands on them. Atomic force microscope images of interlayer nanostructures in such crystals are analyzed in terms of the physics of fractals and self-organization processes.  相似文献   

8.
This article presents the numerical analysis of the amplitude and phase piezoelectric spectra of a group of mixed crystals of the Zn1-x-yBexMnySe type. After growth treatment of mixed crystals, such as grinding, polishing, and etching, some surface defects have been created whose energy levels are in the region of the band gap of the material. The lower the concentration of these defects is, the smaller amplitude of the photothermal signal in this energy region is expected and the higher the quality of such a crystal surface is. This article focused on the study of the application of photothermal piezoelectric method for investigation of the surface energy levels and their corresponding absorption bands in the energy-gap region of the material.  相似文献   

9.
Fine Ti5Si3 powder has been mechanochemically synthesized from a mixture of elemental Ti and Si powders. When Ti5Si3 is added as a catalyst into Li3AlH6, it shows a good catalytic ability by reducing the decomposition temperature and improving the decomposition kinetics as well. Although its catalytic effect is not as good as well-known TiCl3, the use of Ti5Si3 has a benefit of releasing more hydrogen than TiCl3 during dehydrogenation. This can be explained by that Ti5Si3, unlike TiCl3, does not incur any chemical reactions with Li3AlH6 and thus remains inert during milling for dispersion.  相似文献   

10.
When tin oxide is doped with Sb2O3 and CoO, it shows highly nonlinear current (I)-voltage (V) characteristics. Addition of CoO leads to creation of oxygen vacancies and helps in sintering of SnO2. Antimony oxide acts as a donor and increases the conductivity. The results are nearly the same when antimony oxide is replaced by tantalum oxide. The observed nonlinear coefficient, α = 30 and the breakdown voltage is 120 V/mm.  相似文献   

11.
We discuss the annealing-dependence of exchange bias in Ga1− x Mn x As epilayers that are overgrown with Mn. Although pure Mn is a known antiferromagnet, we find that the as-grown Mn overlayer does not produce any exchange coupling with Ga1− x Mn x As. Rather, our studies indicate that annealing in air is essential for creating the standard signatures of exchange bias (a clear shift in the magnetization hysteresis loop and an increased coercive field). We use X-ray photoelectron spectroscopy to characterize the compositional depth profile of both as-grown and rapid thermal annealed samples. These studies demonstrate that the cleanest exchange bias arises when the Mn overlayer is completely converted into MnO.  相似文献   

12.
We gave studied the crystallization behavior of 30BaO · 25Bi2O3 · 45B2O3 glasses doped with Eu2O3 to different levels. At a Eu2O3 content of 7 mol % or higher, the glasses undergo volume crystallization. The only precipitating phase is a solid solution between europium and bismuth oxides. With increasing europium concentration in the glass, the structure of the crystallites changes from cubic to rhombohedral. We have investigated the morphology, physicochemical properties, and luminescence spectra of the glasses and glass-ceramics.  相似文献   

13.
This paper describes the structural, magnetic, and dielectric properties of Gd3+ substituted cobalt–copper ferrite. The influence of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt–copper ferrite was investigated through various characterization techniques. Thermal analysis was carried out on the prepared gel to know the combustion and calcination temperature. The detailed structural analysis suggests that the substitution of a Fe3+ ion with a Gd3+ ion at B site results in lattice distortion, modification in crystallite size and grain size of the material. X-ray photoelectron spectroscopy confirmed the oxidation states of the elements present. Magnetic measurement performed at 300 and 50 K depicts the decrease in saturation magnetization (Ms) and increase in coercivity (Hc) with Gd3+ substitution in the cobalt–copper spinel ferrite. The dielectric measurements acquired over a wide range of frequencies and temperature showed an increase in dielectric constant with increasing Gd3+ concentration.  相似文献   

14.
The deformation and fracture behavior of Zr50Ti16.5Cu15Ni18.5 bulk amorphous metal in the form of a thin ribbon have been determined in tensile test at room temperature. The fracture is localized in a major shear band and the fracture angle between the tensile stress axis and the fracture plane is close to 45°. Fractographic observations have revealed that the fracture surface of the amorphous metallic glass consists mainly of a vein-like pattern morphology. We present a scheme of three zones of fracture surface morphology: progressive smooth sliding region (A), dominating vein like pattern (B), and river-like ripples (C). __________ Translated from Problemy Prochnosti, No. 1, pp. 28–31, January–February, 2008.  相似文献   

15.
Barium-cobalt-bismuth-niobate, Ba0.5Co0.5Bi2Nb2O9 (BCoBN) nanocrystalline ferroelectric ceramic was prepared through chemical route. XRD analysis showed single phase layered perovskite structure of BCoBN when calcined at 650 °C, 2 h. The average crystallite size was found to be 18 nm. The microstructure was studied through scanning electron microscopy. The dielectric and ferroelectric properties were investigated in the temperature range 50–500 °C. The dielectric constant and dielectric loss plot with respect to temperature both indicated strong relaxor behavior. Frequency versus complex impedance plot also supported the relaxor properties of the material. The impedance spectroscopy study showed only grain conductivity. Variation of ac conductivity study exhibited Arrhenius type of electrical conductivity where the hopping frequency shifted towards higher frequency region with increasing temperature. The ac conductivity values were used to evaluate the density of state at the Fermi level. The minimum hopping distance was found to be decreased with increasing temperature.  相似文献   

16.
A process that presents no explosion hazard is proposed for the preparation of tin(II) hexathiohypodiphosphate(IV) in a limited amount of air. The reaction of tin(II) sulfide with a mixture of phosphorus sulfides with the overall composition “P4S8” is studied, and the influence of synthesis temperature and duration on the completion of the reaction is analyzed.  相似文献   

17.
Polycrystalline sample of Pb2Sb3LaTi5O18, a member of tungsten- bronze (TB family, was prepared using a high temperature solid- state reaction technique. XRD analysis indicated the formation of a single-phase orthorhombic structure. The dielectric studies revealed the diffuse phase transition and the transition temperature was found to be at 52° C. Impedance plots were used as tools to analyse the sample behaviour as a function of frequency. Cole-Cole plots showed Debye relaxation. The activation energy was estimated to be 0·634 eV from the temperature variation of d.c. conductivity. The nature of variation of d.c. conductivity with temperature suggested NTCR behaviour.  相似文献   

18.
The low thermal expansion ceramic system, Ca1-xSr{x}Zr4P6O24, for the compositions with x = 0, 0.25, 0.50, 0.75 and 1 was synthesized by solid-state reaction. The sintering characteristics were ascertained by bulk density measurements. The fracture surface microstructure examined by scanning electron microscopy showed the average grain size of 2.47 μm for all the compositions. The thermal expansion data for these ceramic systems over the temperature range 25–800°C is reported. The sinterability of various solid solutions and the hysteresis in dilatometric behaviour are shown to be related to the crystallographic thermal expansion anisotropy. A steady increase in the amount of porosity and critical grain size with increase in x is suggested to explain the observed decrease in the hysteresis.  相似文献   

19.
We have studied the properties of nanocrystalline ZrO2-Y2O3-CeO2-CoO-Al2O3 powders prepared via hydrothermal treatment of a mixture of coprecipitated hydroxides at 210°C. A number of general trends are identified in the variation of the properties of the synthesized powders during heat treatment at temperatures from 500 to 1200°C. Our results demonstrate that the addition of 0.3 mol % CoO to nanocrystalline ZrO2-based powders containing 1 to 5 mol % Al2O3 allows one to obtain composites with good sinterability at a reduced temperature (1200°C).  相似文献   

20.
The microstructure of the eutectic alloy Fe30Ni20Mn35Al15 (in at.%) was modified by cooling at different rates from 1623 K, i.e., above the eutectic temperature. The lamellar spacing decreased with increasing cooling rate, and in water-quenched specimens lamellae widths of ~100 nm were obtained. The orientation relationship between the fcc and B2 lamellae was found to be sensitive to the cooling rate. In a drop-cast alloy the Kurdjumov–Sachs orientation relationship dominated, whereas the orientation relationship in an arc-melted alloy with a faster cooling rate was \textfcc( [`1]12 )//\textB2( 0 1 1 );  \textfcc[ 1[`1]1 ]//\textB2 [ 1[`1]1 ]  \textand \textfcc( 0[`1]1 )//\textB2( 00 1 );\text fcc[ 0 1 1 ]//\textB2[ [`1][`1]0 ] {\text{fcc}}\left( {\bar{1}12} \right)//{\text{B2}}\left( {0 1 1} \right);\;{\text{fcc}}\left[ {1\bar{1}1} \right]//{\text{B2 }}\left[ {1\bar{1}1} \right] \,{\text{and}}\,{\text{fcc}}\left( {0\bar{1}1} \right)//{\text{B2}}\left( {00 1} \right);{\text{ fcc}}\left[ {0 1 1} \right]//{\text{B2}}\left[ {\bar{1}\bar{1}0} \right] . The hardness increased with microstructural refinement, obeying a Hall–Petch-type relationship. The strength of the alloy decreased significantly above 600 K due to softening of the B2 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号