首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an anti‐windup bumpless transfer (AWBT) control structure combined with linear interpolation method is proposed for smooth switching control. By choosing an appropriate scheduling signal, different controllers can be switched smoothly under a unified framework. Meanwhile, some robust specifications including H2/H performance, pole placement constraint, and passivity of the closed‐loop system can be preserved through controller switching. Furthermore, for the linear system subject to input saturation, the stability and L2 gain of the closed‐loop system can be guaranteed. Finally, a cart‐spring pendulum system is simulated to demonstrate the effectiveness of the proposed scheme.  相似文献   

2.
This paper uses sliding mode control to accomplish the objectives of swing‐up and stabilization of the cart‐pole underactuated system. The features of underactuated systems prohibit direct application of conventional sliding mode control for fully‐actuated systems. In this paper, we design a novel sliding mode control for the cart‐pole underactuated system so that the control goals can be achieved. In addition, by simply changing the parameters of the sliding surface, we use only one sliding mode control scheme to swing up and to stabilize the cart‐pole system. Using the sliding mode dynamics and the internal dynamics, we show that the proposed sliding mode control can swing up the cart‐pole system from the stable equilibrium and can stabilize the system to the unstable equilibrium. Our simulation results on a cart‐pole system demonstrate the feasibility of the proposed sliding mode control. The proposed control schemes, the stability analysis, and the numerical simulation provide a useful guideline for designing the sliding mode control for the cart‐pole underactuated system.  相似文献   

3.
The cart‐inverted pendulum is a non‐minimum phase system having right half s‐plane pole and zero in close vicinity to each other. Linear time invariant (LTI) classical controllers cannot achieve satisfactory loop robustness for such systems. Therefore, in the present work the fractional order PIλDμ (FOPID) controller is addressed for robust stabilization of the system, since fractional order controller design allows more degrees of freedom compared to its integer order counterparts by virtue of its two parameters λ and μ. The controller parameters are tuned by three evolutionary optimization techniques. In order to select the controller parameters optimally, a novel non‐linear fitness function using integral time square error (ITSE), settling‐time, and rise time is proposed here. The control algorithm is implemented successfully in real‐time. Moreover, stability analysis of the system compensated with a fractional order controller is presented using Riemann surface. Robustness of the physical cart‐inverted pendulum system towards multiplicative gain variations and plant parameter variations is verified. In this regard, it is shown that the fractional order controller provides satisfactory robust performance in both simulation and real‐time system.  相似文献   

4.
We present normal forms for nonlinear control systems that are the closest to static feedback linearizable ones, that is, for systems that become feedback linearizable via the simplest dynamic feedback, which is the one‐fold prolongation of a suitably chosen control. They form a particular class of flat systems, namely those of differential weight n + m + 1, where n is the number of states and m is the number of controls. We also show that the dynamic feedback may create singularities in the control space depending on the state and we discuss them. We also address the issue of the normalization of the system only versus that of the system together with a flat output. Finally, we illustrate our results by several examples.  相似文献   

5.
This paper studies the resilient (non‐fragile) H∞ output‐feedback control design for discrete‐time uncertain linear systems with controller uncertainty. The design considers parametric norm‐bounded uncertainty in all state‐space matrices of the system, output and controller equations. The paper shows that the resilient H∞ output‐feedback control problem is equivalent to a scaled H∞ output‐feedback control problem of an auxiliary system without any system or controller uncertainty. Using the existing optimal H∞ design to solve the auxiliary system, the design guarantees that the resultant closed‐loop systems are quadratically stable with disturbance attenuation γ for all admissible system and controller uncertainties. A numerical example is given to illustrate the design method and its benefits.  相似文献   

6.
This paper proposes a novel approach to the problem of ??2 disturbance attenuation with global stability for nonlinear uncertain systems by placing great emphasis on seamless integration of linear and nonlinear controllers. This paper develops a new concept of state‐dependent scaling adapted to dynamic uncertainties and nonlinear‐gain bounded uncertainties that do not necessarily have finite linear‐gain, which is a key advance from previous scaling techniques. The proposed formulation of designing global nonlinear controllers is not only a natural extension of linear robust control, but also the approach renders the nonlinear controller identical with the linear control at the equilibrium. This paper particularly focuses on scaled ?? control which is widely accepted as a powerful methodology in linear robust control, and extends it nonlinearly. If the nonlinear system belongs to a generalized class of triangular systems allowing for unmodelled dynamics, the effect of the disturbance can be attenuated to an arbitrarily small level with global asymptotic stability by partial‐state feedback control. A procedure of designing such controllers is described in the form of recursive selection of state‐dependent scaling factors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
8.
In this article, a multi-objective control u(t) is designed for stochastic model reference systems to achieve the following three objectives simultaneously: the pole placement constraint, H -norm constraint and individual error state variance constraint. Using the invariance property of sliding mode control, the reference model input and the plant error term will disappear on the sliding mode of the error system. By combining the upper bound covariance control theory, pole placement skill and H -norm control theory, a controller, in which the control feedback gain matrix is synthesised utilising linear matrix inequality (LMI) approach, is derived to achieve the above multiple objectives. Furthermore, a practical example for the problem of ship yaw-motion systems is adopted to illustrate the proposed method.  相似文献   

9.
This study presents the use of Tustin's friction model and a disturbance observer (DOB) to improve the steady‐state error (SSE) of a bi‐axial inverted pendulum–cart system (IPCS). Furthermore, a hybrid controller contains a feedback linearization control for pendulum angle in the region of 3–12° to enlarge the angle of operation and an H control using loop shaping design procedure (LSDP) for cart position and pendulum angle in the region of 0–3° to stabilize the IPCS, respectively. Experimental results reveal that the pendulum maximum angle of operation is improved from 7 to 12°; the SSE of the angle of the pendulum is reduced from 0.85 to 0.1°, and the SSE of the position of the cart is reduced from 10 to 1.4 mm. Experimental results are illustrated and films are provided at the web site http://hinfinity.myweb.hinet.net to show the effectiveness and robustness of the hybrid controller with Tustin's friction model and DOB compensation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
We consider inverse optimal control for strict‐feedforward systems with input delays. A basic predictor control is designed for compensation for this class of nonlinear systems. Furthermore, the proposed predictor control is inverse optimal with respect to a meaningful differential game problem. For a class of linearizable strict‐feedforward system, an explicit formula for compensation for input delay, which is also inverse optimal with respect to a meaningful differential game problem, is also acquired. A cart with an inverted pendulum system is given to illustrate the validity of the proposed method.  相似文献   

11.
This paper studies an adaptive neural control for nonlinear multiple‐input multiple‐output systems with dynamic uncertainties, hysteresis input, and time delay. The studied systems are composed of N nonlinear time‐delay subsystems and the interconnection terms are contained in every equation of each subsystem. Adaptive neural control algorithms are developed by introducing a well‐defined smooth function. The unknown time‐varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing an available dynamic signal. The main advantage of the proposed controllers is that they contain fewer parameter estimates that need to be updated online. Consequently, the accuracy of ultimate tracking errors asymptotically approaches a pre‐defined bound, and all signals in the closed‐loop systems are also ensured to be uniformly ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness and merits of the proposed adaptive neural network control schemes.  相似文献   

12.
The main result of the paper states that almost any analytic single-input control system, which is truly nonlinear, that is not feedback linearizable, with controllable linearization at an equilibrium point, does not admit any symmetry preserving that point. By almost any system, we mean that we exclude a small class of odd systems, that admit just one nontrivial symmetry conjugated to minus identity. The obtained results are based on a recent classification of nonlinear single-input systems under formal feedback. We also describe symmetries of feedback linearizable systems.  相似文献   

13.
This article deals with transformations of multiinput nonlinear control systems into linear controllable systems. For multiinput control affine systems, the notion of A‐orbital feedback linearizability is introduced which generalizes the notion of orbital feedback linearizability and is based on input‐dependent time scalings. A necessary and sufficient condition for A‐orbital feedback linearizability is derived for multiinput control affine systems. On the basis of this condition, an A‐orbital feedback linearization algorithm is developed. It is revealed that the proposed concept extends the existing approaches to orbital feedback linearization. More precisely, it is proved that if a system is A‐orbitally feedback linearizable in a neighborhood of some point, the dimension of the state is greater than that of the input by at least three, and the time scaling essentially depends on the input, then the system cannot be orbitally feedback linearized around that point.  相似文献   

14.
This paper investigates the problem of practical stabilization for linear systems subject to actuator saturation and input additive disturbance. Attention is restricted to systems with two anti‐stable modes. For such a system, a family of linear feedback laws is constructed that achieves semi‐global practical stabilization on the asymptotically null controllable region. This is in the sense that, for any set χ0 in the interior of the asymptotically null controllable region, any (arbitrarily small) set χ containing the origin in its interior, and any (arbitrarily large) bound on the disturbance, there is a feedback law from the family such that any trajectory of the closed‐loop system enters and remains in the set χ in a finite time as long as it starts from the set χ0. In proving the main results, the continuity and monotonicity of the domain of attraction for a class of second‐order systems are revealed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Linear parameter‐varying (LPV) systems provide a systematic framework for the study of nonlinear systems by considering a representative family of linear time‐invariant systems parameterized by system parameters residing in a compact set. The brief instability concept in such systems allows the linear system to be unstable for some trajectories of the LPV parameter set, so that instability occurs only for short periods of time. In the present paper, we extend the notion of brief instability to LPV systems with time delay in their dynamics. The results provide tools for the stability and performance analysis of such systems, where performance is evaluated in terms of induced ??2‐gain (or so‐called ?? norm). The main results of this paper illustrate that stability and performance conditions can be evaluated by examining the feasibility of parameterized sets of linear matrix inequalities (LMIs). Using the results of this paper, we then investigate analysis conditions to guarantee the asymptotic stability and ?? performance of fault‐tolerant control (FTC) systems, in which instability may take place for a short period of time due to the false identification of the fault signals provided by a fault detection and isolation (FDI) module. The numerical examples are used to illustrate the qualification of the proposed analysis and synthesis results for addressing brief instability in time‐delay systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
平面倒立摆自适应滑模模糊控制   总被引:7,自引:0,他引:7  
采用拉格朗日方程建立平面倒立摆的动力学模型,并将其在平衡位置进行线性化,得到了系统在X和Y两个正交控制方向解耦的近似模型.针对每一个控制方向上由互相耦合的基座小车定位子系统和摆杆镇定子系统组成的欠驱动系统,设计了自适应滑模模糊控制器,实现了基座小车沿圆周行走条件下摆杆的运动平衡控制.行走实验验证了所提出控制算法的有效性.  相似文献   

17.
In this paper, robust stochastic stabilization and H control for a class of uncertain discrete‐time linear systems with Markovian jumping parameters are considered. Based on a new bounded real lemma derived upon an inequality recently proposed, a new iterative state‐feedback controller design procedure for discrete time‐delay systems is presented. Sufficient conditions for stochastic stabilization are derived in the form of linear matrix inequalities (LMIs) based on an equivalent model transformation, and the corresponding H control law is given. Finally, numerical examples are given to illustrate the solvability of the problems and effectiveness of the results.  相似文献   

18.
We propose an algorithm for the state-feedback pole assignment problem. The algorithm is the first of its kind, making direct use of the Schur form, and minimizing the departure from normality of the closed-loop poles for a given first Schur vector x1. The robust pole assignment problem can then be solved via choosing x1 optimally. Several numerical examples were presented to illustrate the feasibility of the algorithm.  相似文献   

19.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号