共查询到20条相似文献,搜索用时 10 毫秒
1.
Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time‐varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay‐independent output feedback controller making the closed‐loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high‐gain observer in combination with a linear dynamic high‐gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
2.
In this paper, we propose contributions on the stabilization and control of switched linear systems subject to time‐delays through the assignment of the switching law. As a first step, based on previous results related to switched linear systems with no time‐delays and exploiting the concept of piecewise quadratic Lyapunov–Krasovskii functionals, we solve the problem of finding suitable state‐dependent switching laws ensuring the prescribed control objectives. Secondly, we extend such results and present a strategy to construct an output feedback switching law, based on the available measurements made on the system. In both cases, the design of the control strategy is done by computing a feasible solution to a set of matrix inequalities associated to the modes of the switched linear system. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
This paper revisits the static output‐feedback stabilization problem for positive systems. We first point out that for a class of positive systems whose output matrix has a particular row echelon form, this problem can be completely solved via linear programming. By duality, the result is also valid when the column echelon form of the input matrix has a particular structure. Along this line, by augmenting the output matrix as well as the feedback gain matrix, an iterative convex optimization algorithm is developed for the more general case. Finally, we show that the proposed method has advantages over existing works via several numerical examples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
This paper investigates the problems of stability analysis and stabilization for stochastic time‐delay systems. Firstly, this paper uses the martingale theory to investigate expectations of stochastic cross terms containing the Itô integral. On the basis of this, an improved delay‐dependent stability criterion is derived for stochastic delay systems. In the derivation process, the mathematical development avoids bounding stochastic cross terms, and neither model transformation method nor free‐weighting‐matrix method is used. Thus, the method leads to a simple criterion and shows less conservatism. Secondly, on the basis of this stability result, this paper further proposes a state‐feedback controller that exponentially stabilizes the stochastic delay system by a strict LMI. Therefore, unlike previous results, it is not necessary to transform the nonlinear matrix inequalities into LMIs by the cone complementarity linearization method or parameter‐tuning method, which always yield a suboptimal solution. Finally, examples are provided to demonstrate the reduced conservatism of the proposed conditions.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
6.
It is well known that a delay‐dependent or delay‐independent truncated predictor feedback law stabilizes a general linear system in the presence of a certain amount of input delay. Results also exist on estimating the maximum delay bound that guarantees stability. In the face of a time‐varying or unknown delay, delay‐independent feedback laws are preferable over delay‐dependent feedback laws as the former provide robustness to the uncertainties in the delay. In the light of few results on the construction of delay‐independent output feedback laws for general linear systems with input delay, we present in this paper a delay‐independent observer–based output feedback law that stabilizes the system. Our design is based on the truncated predictor feedback design. We establish an estimate of the maximum allowable delay bound through the Razumikhin‐type stability analysis. An implication of the delay bound result reveals the capability of the proposed output feedback law in handling an arbitrarily large input delay in linear systems with all open‐loop poles at the origin or in the open left‐half plane. Compared with that of the delay‐dependent output feedback laws in the literature, this same level of stabilization result is not sacrificed by the absence of the prior knowledge of the delay. 相似文献
7.
Global output feedback sampled‐data stabilization for upper‐triangular nonlinear systems with improved maximum allowable transmission delay 下载免费PDF全文
This paper addresses the problem of output feedback sampled‐data stabilization for upper‐triangular nonlinear systems with improved maximum allowable transmission delay. A class of hybrid systems are firstly introduced. The transmission delay may be larger than the sampling period. Then, sufficient conditions are proposed to guarantee global exponential stability of the hybrid systems. Based on these sufficient conditions and a linear continuous‐discrete observer, an output feedback control law is presented to globally exponentially stabilize the feedforward nonlinear system. The improved maximum allowable transmission delay is also given. The results are also extended to output feedback sampled‐data stabilization for lower‐triangular nonlinear systems. Finally, illustrative examples are used to verify the effectiveness of the proposed design methods. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
This paper investigates the problem of state‐feedback stabilization for a class of lower‐triangular stochastic time‐delay nonlinear systems without controllable linearization. By extending the adding‐a‐power‐integrator technique to the stochastic time‐delay systems, a state‐feedback controller is explicitly constructed such that the origin of closed‐loop system is globally asymptotically stable in probability. The main design difficulty is to deal with the uncontrollable linearization and the nonsmooth system perturbation, which, under some appropriate assumptions, can be solved by using the adding‐a‐power‐integrator technique. Two simulation examples are given to illustrate the effectiveness of the control algorithm proposed in this paper.Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
9.
Decentralized delay‐dependent local stability and resilient feedback stabilization methods are developed for a class of linear interconnected continuous‐time systems. The subsystems are time‐delay plants which are subjected to convex‐bounded parametric uncertainties and additive feedback gain perturbations while allowing time‐varying delays to occur within the local subsystems and across the interconnections. The delay‐dependent local stability conditions are established at the subsystem level through the construction of appropriate Lyapunov–Krasovskii functional. We characterize decentralized linear matrix inequalities (LMIs)‐based delay‐dependent stability conditions by deploying an injection procedure such that every local subsystem is delay‐dependent robustly asymptotically stable with an γ‐level ??2‐gain. Resilient decentralized state‐feedback stabilization schemes are designed, which takes into account additive gain perturbations such that the family of closed‐loop feedback subsystems enjoys the delay‐dependent asymptotic stability with a prescribed γ‐level ??2‐gain for each subsystem. The decentralized feedback gains are determined by convex optimization over LMIs. All the developed results are tested on representative examples. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
This article addresses the problem of global output feedback stabilization for a class of time‐varying delay nonlinear systems with polynomial growth rate. The systems under investigation possess two remarkable features: the output is perturbed by an unknown sensitivity function that is not differentiable but continuous, and the nonlinearities are bounded by a polynomial function of the output multiplied by unmeasurable state variables. The new full‐order observer is established by introducing a dynamic gain and filtering unknown nonlinearities and time‐varying delay. With the help of the transformation skill and the reasonable combination of several systems, this article proposes a linear output feedback controller with the dynamic gain and completes the performance analysis based on the construction of two integral Lyapunov functions. Finally, a simulation example is presented to demonstrate the effectiveness of control strategy. 相似文献
11.
Robust output feedback stabilization of nonlinear systems with low‐order and high‐order nonlinearities 下载免费PDF全文
In this paper, we consider the problem of global output feedback stabilization for a class of nonlinear systems whose nonlinearities are assumed to be bounded by both low‐order and high‐order nonlinearities multiplied by a polynomial‐type output‐dependent growth rate. Instead of the previously proposed dual observer, based on the homogeneous domination approach, a new reduced‐order observer is constructed, which greatly simplifies the closed‐loop controller and is able to cover a more general class of nonlinear systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
This paper is concerned with the problem of stabilizing a linear system with input delay. Motivated by the first‐order truncated predictor feedback (TPF) approach recently developed by the authors, a general higher‐order TPF controller that contains higher‐order terms of the nominal feedback gains is proposed. It is shown that this higher‐order TPF can also globally and semi‐globally stabilize the concerned time‐delay systems in the absence and in the presence of input saturation, respectively. Safe implementation via numerical approximation of this higher‐order TPF is also established. However, in spite of the fact that the higher‐order TPF utilizes more information of the state, numerical examples have demonstrated that the first‐order TPF outperforms the higher‐order TPF, indicating that the intuition of higher‐order approximation leading to better results is incorrect in this case.Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
This paper considers the global finite‐time output feedback stabilization of a class of nonlinear high‐order feedforward systems. By using the homogeneous domination method together with adding a power integrator method and overcoming several troublesome obstacles in the design and analysis, a global finite‐time output feedback controller with reduced‐order observer is recursively designed to globally finite‐time stabilize nonlinear high‐order feedforward systems. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
Semi‐global stabilization by output feedback is studied for a class of nonuniformly observable and nonsmoothly stabilizable nonlinear systems. The contribution of this paper is to point out that most of the restrictive growth conditions required in the previous work can be relaxed or removed if a less demanding control objective, namely, semi‐global instead of global stabilization is sought. In particular, it is proved that without imposing restrictive conditions, semi‐global stabilization by nonsmooth output feedback can be achieved for a chain of odd power integrators perturbed by a smooth triangular vector field, although it is neither smoothly stabilizable nor uniformly observable. Extensions to nonstrictly triangular systems are also discussed in the two‐dimensional case. Several examples are provided to illustrate the key features of the proposed semi‐global output feedback controllers. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
本文研究离散时间切换线性自治系统的输出反馈镇定问题. 在切换系统可观测的假设下, 设计具有多线性
时变增益的动态观测器, 实现有限时间状态估计. 在此基础上, 设计多路径动态输出反馈切换策略, 实现闭环系统指
数收敛. 相似文献
16.
We present a class of single-input single-output nonlinear systems which are globally transformable by a dynamic output feedback control and a time-varying state space transformation into a linear, observable and minimum phase system. We then show how those systems can be globally stabilized by a dynamic output feedback nonlinear control and how global output tracking can be achieved as well. 相似文献
17.
Output feedback stabilization of stochastic feedforward nonlinear systems with input and state delay 下载免费PDF全文
This paper considers the problem of output feedback stabilization for a class of stochastic feedforward nonlinear systems with input and state delay. Under a set of coordinate transformations, we first design a linear output feedback controller for a nominal system. Then, with the aid of feedback domination technique and an appropriate Lyapunov–Krasovskii functional, it is proved that the proposed linear output feedback controller can drive the closed‐loop system globally asymptotically stable in probability. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
18.
El Hassan Zerrik Abderrahman Ait Aadi Rachid Larhrissi 《Asian journal of control》2020,22(5):1840-1847
The output stabilization for a class of distributed semilinear system is obtained with stabilizing controls that depend on the output operator. Then, we give sufficient conditions for exponential, strong and weak stabilization. The obtained results are illustrated by examples and simulations. 相似文献
19.
This paper studies the problem of global stabilization of a family of discrete‐time feedforward time‐delay systems with bounded controls. Two classes of nonlinear control laws are established based on a special canonical form of the considered system. The proposed control laws use not only the current states but also the delayed states for feedback and, moreover, contain some free parameters. These advantages can help to improve the transient performance of the closed‐loop system significantly. A practical example is given for illustration. 相似文献
20.
Pseudo‐predictor feedback control of discrete‐time linear systems with a single input delay 下载免费PDF全文
This paper studies the problems of stabilization of discrete‐time linear systems with a single input delay. By developing the methodology of pseudo‐predictor feedback, which uses the (artificial) closed‐loop system dynamics to predict the future state, memoryless state feedback control laws are constructed to solve the problem. Necessary and sufficient conditions are obtained to guarantee the stability of the closed‐loop system in terms of the stability of a class‐difference equations. It is also shown that the proposed controller achieves semi‐global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints under the condition that the open‐loop system is only polynomially unstable. Numerical examples have been worked out to illustrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献