首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a p‐hierarchical adaptive procedure based on minimizing the classical energy norm for the scaled boundary finite element method. The reference solution, which is the solution of the fine mesh formed by uniformly refining the current mesh element‐wise one order higher, is used to represent the unknown exact solution. The optimum mesh is assumed to be obtained when each element contributes equally to the global error. The refinement criteria and the energy norm‐based error estimator are described and formulated for the scaled boundary finite element method. The effectivity index is derived and used to examine quality of the proposed error estimator. An algorithm for implementing the proposed p‐hierarchical adaptive procedure is developed. Numerical studies are performed on various bounded domain and unbounded domain problems. The results reflect a number of key points. Higher‐order elements are shown to be highly efficient. The effectivity index indicates that the proposed error estimator based on the classical energy norm works effectively and that the reference solution employed is a high‐quality approximation of the exact solution. The proposed p‐hierarchical adaptive strategy works efficiently. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
3.
Abstract

The Poisson equation can be solved by first finding a particular solution and then solving the resulting Laplace equation. In this paper, a computational procedure based on the Trefftz method is developed to solve the Poisson equation for two‐dimensional domains. The radial basis function approach is used to find an approximate particular solution for the Poisson equation. Then, two kinds of Trefftz methods, the T‐Trefftz method and F‐Trefftz method, are adopted to solve the resulting Laplace equation. In order to deal with the possible ill‐posed behaviors existing in the Trefftz methods, the truncated singular value decomposition method and L‐curve concept are both employed. The Poisson equation of the type, ?2 u = f(x, u), in which x is the position and u is the dependent variable, is solved by the iterative procedure. Numerical examples are provided to show the validity of the proposed numerical methods and some interesting phenomena are carefully discussed while solving the Helmholtz equation as a Poisson equation. It is concluded that the F‐Trefftz method can deal with a multiply connected domain with genus p(p > 1) while the T‐Trefftz method can only deal with a multiply connected domain with genus 1 if the domain partition technique is not adopted.  相似文献   

4.
Computation of compressible steady‐state flows using a high‐order discontinuous Galerkin finite element method is presented in this paper. An accurate representation of the boundary normals based on the definition of the geometries is used for imposing solid wall boundary conditions for curved geometries. Particular attention is given to the impact and importance of slope limiters on the solution accuracy for flows with strong discontinuities. A physics‐based shock detector is introduced to effectively make a distinction between a smooth extremum and a shock wave. A recently developed, fast, low‐storage p‐multigrid method is used for solving the governing compressible Euler equations to obtain steady‐state solutions. The method is applied to compute a variety of compressible flow problems on unstructured grids. Numerical experiments for a wide range of flow conditions in both 2D and 3D configurations are presented to demonstrate the accuracy of the developed discontinuous Galerkin method for computing compressible steady‐state flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The importance of a two‐parameter approach in the fracture mechanics analysis of many cracked components is increasingly being recognized in engineering industry. In addition to the stress intensity factor, the T stress is the second parameter considered in fracture assessments. In this paper, the path‐independent mutual Mintegral method to evaluate the T stress is extended to treat plane, generally anisotropic cracked bodies. It is implemented into the boundary element method for two‐dimensional elasticity. Examples are presented to demonstrate the veracity of the formulations developed and its applicability. The numerical solutions obtained show that material anisotropy can have a significant effect on the T stress for a given cracked geometry.  相似文献   

6.
To predict the vibro‐acoustic behavior of structures, both a structural problem and an acoustic problem have to be solved. For thin structures immersed in water, a strong interaction between the structural domain and fluid domain occurs. This significantly alters the resonance frequencies. In this work, the structure is modeled by the finite element method. The exterior acoustic problem is solved by a fast boundary element method employing hierarchical matrices. An FE‐BE formulation is presented, which allows the solution of the coupled eigenvalue problem and thus the prediction of the coupled eigenfrequencies and mode shapes. It is based on a Schur complement formulation of the FE‐BE system yielding a generalized eigenvalue problem. A Krylov–Schur solver is applied for its efficient solution. Hereby, the compressibility of the fluid is neglected. The coupled eigensolution is then used for a model reduction strategy allowing fast frequency sweep calculations. The efficiency of the proposed formulations is investigated with respect to memory consumption, accuracy, and computation time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Fast multipole DBEM analysis of fatigue crack growth   总被引:3,自引:1,他引:2  
A fast multipole method (FMM) based on complex Taylor series expansions is applied to the dual boundary element method (DBEM) for large-scale crack analysis in linear elastic fracture mechanics. Combining multipole expansions with local expansions, both the computational complexity and memory requirement are reduced to O(N), where N is the number of DOF. An incremental crack-extension analysis based on the maximum principal stress criterion and the Paris law is used to simulate the fatigue growth of numerous cracks in a 2D solid. Some examples are presented to validate the numerical scheme.  相似文献   

8.
In this paper we develop an alternative boundary element method (BEM) formulation for the analysis of anisotropic three‐dimensional (3D) elastic solids. Our implementation is based on the derivation of explicit expressions for the fundamental solution displacements and tractions, of general validity for any class of anisotropic materials, by means of Stroh formalism and Cauchy's residue theory. The resulting fundamental solution remains valid for mathematical degenerate cases when Stroh's eigenvalues are coincident, meanwhile it does not exhibit numerical instabilities for quasi‐degenerate cases when Stroh's eigenvalues are nearly equal. A multiple pole residue approach is followed, leading to general explicit expressions to evaluate the traction fundamental solution for poles of m‐multiplicity. Despite the existence of general displacement solutions in the literature, and for the sake of completeness, the same approach as for the traction solution is considered to derive the displacement fundamental solution as well. Based on these solutions, an explicit BEM approach for the numerical solution of 3D linear elastic problems for solids with general anisotropic behavior is presented. The analysis of cracked anisotropic solids is also considered. Details on the numerical implementation and its validation for degenerate cases are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
An original approach to the solution of linear elastic domain decomposition problems by the symmetric Galerkin boundary element method is developed. The approach is based on searching for the saddle‐point of a new potential energy functional with Lagrange multipliers. The interfaces can be either straight or curved, open or closed. The two coupling conditions, equilibrium and compatibility, along an interface are fulfilled in a weak sense by means of Lagrange multipliers (interface displacements and tractions), which enables non‐matching meshes to be used at both sides of interfaces between subdomains. The accuracy and robustness of the method is tested by several numerical examples, where the numerical results are compared with the analytical solution of the solved problems, and the convergence rates of two error norms are evaluated for h‐refinements of matching and non‐matching boundary element meshes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The transient Green's function of the 2‐D Lamb's problem for the general case where point source and receiver are situated beneath the traction‐free surface is derived. The derivations are based on Laplace‐transform methods, utilizing the Cagniard–de Hoop inversion. The Green's function is purely algebraic without any integrals and is presented in a numerically applicable form for the first time. It is used to develop a Green's function BEM in which surface discretizations on the traction‐free boundary can be saved. The time convolution is performed numerically in an abstract complex plane. Hence, the respective integrals are regularized and only a few evaluations of the Green's function are required. This fast procedure has been applied for the first time. The Green's function BEM developed proved to be very accurate and efficient in comparison with analogue BEMs that employ the fundamental solution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper acceleration and computer memory reduction of an algorithm for the simulation of laminar viscous flows and heat transfer is presented. The algorithm solves the velocity–vorticity formulation of the incompressible Navier–Stokes equations in 3D. It is based on a combination of a subdomain boundary element method (BEM) and single domain BEM. The CPU time and storage requirements of the single domain BEM are reduced by implementing a fast multipole expansion method. The Laplace fundamental solution, which is used as a special weighting function in BEM, is expanded in terms of spherical harmonics. The computational domain and its boundary are recursively cut up forming a tree of clusters of boundary elements and domain cells. Data sparse representation is used in parts of the matrix, which correspond to boundary‐domain clusters pairs that are admissible for expansion. Significant reduction of the complexity is achieved. The paper presents results of testing of the multipole expansion algorithm by exploring its effect on the accuracy of the solution and its influence on the non‐linear convergence properties of the solver. Two 3D benchmark numerical examples are used: the lid‐driven cavity and the onset of natural convection in a differentially heated enclosure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Fast algorithms for the computation of N‐body problems can be broadly classified into mesh‐based interpolation methods, and hierarchical or multiresolution methods. To this latter class belongs the well‐known fast multipole method (FMM ), which offers ??(N) complexity. The FMM is a complex algorithm, and the programming difficulty associated with it has arguably diminished its impact, being a barrier for adoption. This paper presents an extensible parallel library for N‐body interactions utilizing the FMM algorithm. A prominent feature of this library is that it is designed to be extensible, with a view to unifying efforts involving many algorithms based on the same principles as the FMM and enabling easy development of scientific application codes. The paper also details an exhaustive model for the computation of tree‐based N‐body algorithms in parallel, including both work estimates and communications estimates. With this model, we are able to implement a method to provide automatic, a priori load balancing of the parallel execution, achieving optimal distribution of the computational work among processors and minimal inter‐processor communications. Using a client application that performs the calculation of velocity induced by N vortex particles in two dimensions, ample verification and testing of the library was performed. Strong scaling results are presented with 10 million particles on up to 256 processors, including both speedup and parallel efficiency. The largest problem size that has been run with the P etFMM library at this point was 64 million particles in 64 processors. The library is currently able to achieve over 85% parallel efficiency for 64 processes. The performance study, computational model, and application demonstrations presented in this paper are limited to 2D. However, the software architecture was designed to make an extension of this work to 3D straightforward, as the framework is templated over the dimension. The software library is open source under the PETS c license, even less restrictive than the BSD license; this guarantees the maximum impact to the scientific community and encourages peer‐based collaboration for the extensions and applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
An approximate level set method for three‐dimensional crack propagation is presented. In this method, the discontinuity surface in each cracked element is defined by element‐local level sets (ELLSs). The local level sets are generated by a fitting procedure that meets the fracture directionality and its continuity with the adjacent element crack surfaces in a least‐square sense. A simple iterative procedure is introduced to improve the consistency of the generated element crack surface with those of the adjacent cracked elements. The discrete discontinuity is treated by the phantom node method which is a simplified version of the extended finite element method (XFEM). The ELLS method and the phantom node technology are combined for the solution of dynamic fracture problems. Numerical examples for three‐dimensional dynamic crack propagation are provided to demonstrate the effectiveness and robustness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In the assumed displacement, or primal, hybrid finite element method, the requirements of continuity of displacements across the sides are regarded as constraints, imposed using Lagrange multipliers. In this paper, such a formulation for linear elasticity, in which the polynomial approximation functions are not associated with nodes, is presented. Elements with any number of sides may be easily used to create meshes with irregular vertices, when performing a non‐uniform h‐refinement. Meshes of non‐uniform degree may be easily created, when performing an hp‐refinement. The occurrence of spurious static modes in meshes of triangular elements, when compatibility is strongly enforced, is discussed. An algorithm for the automatic selection, based on the topology of a mesh of triangular elements, of the sides in which to decrease the degree of the approximation functions, in order to eliminate all these spurious modes and preserve compatibility, is presented. A similar discussion is presented for the occurrence of spurious static modes in meshes of tetrahedral elements. An algorithm, based on heuristic criteria, that succeeded in eliminating these spurious modes and preserving compatibility in all the meshes of tetrahedral elements of uniform degree that were tested, is also presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A new fast multipole boundary element method (BEM) is presented in this paper for large‐scale analysis of two‐dimensional (2‐D) elastostatic problems based on the direct boundary integral equation (BIE) formulation. In this new formulation, the fundamental solution for 2‐D elasticity is written in a complex form using the two complex potential functions in 2‐D elasticity. In this way, the multipole and local expansions for 2‐D elasticity BIE are directly linked to those for 2‐D potential problems. Furthermore, their translations (moment to moment, moment to local, and local to local) turn out to be exactly the same as those in the 2‐D potential case. This formulation is thus very compact and more efficient than other fast multipole approaches for 2‐D elastostatic problems using Taylor series expansions of the fundamental solution in its original form. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM formulation and code. BEM models with more than one million equations have been solved successfully on a laptop computer. These results clearly demonstrate the potential of the developed fast multipole BEM for solving large‐scale 2‐D elastostatic problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
17.
A new dual reciprocity‐type approach to approximating the solution of non‐homogeneous hyperbolic boundary value problems is presented in this paper. Typical variants of the dual reciprocity method obtain approximate particular solutions of boundary value problems in two steps. In the first step, the source function is approximated, typically using radial basis, trigonometric or polynomial functions. In the second step, the particular solution is obtained by analytically solving the non‐homogeneous equation having the approximation of the source function as the non‐homogeneous term. However, the particular solution trial functions obtained in this way typically have complicated expressions and, in the case of hyperbolic problems, points of singularity. Conversely, the method presented here uses the same trial functions for both source function and particular solution approximations. These functions have simple expressions and need not be singular, unless a singular particular solution is physically justified. The approximation is shown to be highly convergent and robust to mesh distortion. Any boundary method can be used to approximate the complementary solution of the boundary value problem, once its particular solution is known. The option here is to use hybrid‐Trefftz finite elements for this purpose. This option secures a domain integral‐free formulation and endorses the use of super‐sized finite elements as the (hierarchical) Trefftz bases contain relevant physical information on the modeled problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
An efficient weight function technique using the indirect boundary integral method was presented for cracked circular discs. The crack opening displacement field was presented by a single layer whose kernel was a modified form of the fundamental solution in elastostatics. The application of a single-layer potential to the weight function method leads to a unique closed-form SIF (stress intensity factor) solution. The solution can be applied to a cracked circular discs with or without an internal hole or opening. For these crack geometries over a wide range of crack ratios, the SIF solution can be applied without any modification.

The calculation procedure of SIFs for the various cracked circular discs using only one analytical solution is very simple and straightforward. The information necessary in the analysis includes only two or three reference load cases. In most cases the SIF solution using two reference SIFs gives reasonably accurate results while the SIF solution with three reference load cases may be used to improve the solution accuracy of the crack configurations, with an internal opening or hole, compared with the solutions of the available literature.  相似文献   


19.
In the present paper a fast solver for dual boundary element analysis of 3D anisotropic crack problems is formulated, implemented and tested. The fast solver is based on the use of hierarchical matrices for the representation of the collocation matrix. The admissible low rank blocks are computed by adaptive cross approximation (ACA). The performance of ACA against the accuracy of the adopted computational scheme for the evaluation of the anisotropic kernels is investigated, focusing on the balance between the kernel representation accuracy and the accuracy required for ACA. The system solution is computed by a preconditioned GMRES and the preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the hierarchical format. The effectiveness of the proposed technique for anisotropic crack problems has been numerically demonstrated, highlighting the accuracy as well as the significant reduction in memory storage and analysis time. In particular, it has been numerically shown that the computational cost grows almost linearly with the number of degrees of freedom, obtaining up to solution speedups of order 10 for systems of order 104. Moreover, the sensitivity of the performance of the numerical scheme to materials with different degrees of anisotropy has been assessed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The research work extends the scaled boundary finite element method to non‐deterministic framework defined on random domain wherein random behaviour is exhibited in the presence of the random‐field uncertainties. The aim is to blend the scaled boundary finite element method into the Galerkin spectral stochastic methods, which leads to a proficient procedure for handling the stress singularity problems and crack analysis. The Young's modulus of structures is considered to have random‐field uncertainty resulting in the stochastic behaviour of responses. Mathematical expressions and the solution procedure are derived to evaluate the statistical characteristics of responses (displacement, strain, and stress) and stress intensity factors of cracked structures. The feasibility and effectiveness of the presented method are demonstrated by particularly chosen numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号