首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the problem of designing robust guaranteed cost control law for a class of uncertain neutral system with a given quadratic cost function is considered. Based on Lyapunov–Krasovskii functional theory, a delay‐dependent criterion for the existence of guaranteed cost controller is expressed in the form of two linear matrix inequalities (LMIs), which can be solved by using effective LMI toolbox. Moreover, a convex optimization problem satisfying some LMI constraints is formulated to solve a guaranteed cost controller which achieves the minimization of the closed‐loop guaranteed cost. An efficient approach is proposed to design the guaranteed cost control for uncertain neutral systems. Computer software Matlab can be used to solve all the proposed results. Finally, a numerical example is illustrated to show the usefulness of our obtained design method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In this note, the problem of delay‐dependent robust stabilization for singular systems with multiple time‐varying state delays has been investigated, and the problem is solved via state feedback controller in terms of a linear matrix inequality technique. Numerical examples are given to show the validity of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This paper deals with the problems of passivity analysis and passivity‐based controller design for Markovian jump systems with both time‐varying delays and norm‐bounded parametric uncertainties. Firstly, new delay‐dependent conditions for the considered system to be passive are obtained by using a mode‐dependent Lyapunov functional and by introducing some slack variables. These conditions are expressed by means of LMIs that are easy to check. It is shown through a numerical example that the obtained passivity conditions are less conservative than the existing ones in the literature. Secondly, the passification problem is investigated. On the basis of the obtained passivity conditions, dynamic output‐feedback controllers are designed, which ensure that the resulting closed‐loop system is passive. The effectiveness of the proposed design method is demonstrated by a numerical example. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper focuses on the adaptive stabilization problem for a class of high‐order nonlinear systems with time‐varying uncertainties and unknown time‐delays. Time‐varying uncertain parameters are compensated by combining a function gain with traditional adaptive technique, and unknown multiple time‐delays are manipulated by the delicate choice of an appropriate Lyapunov function. With the help of homogeneous domination idea and recursive design, a continuous adaptive state‐feedback controller is designed to guarantee that resulting closed‐loop systems are globally uniformly stable and original system states converge to zero. The effectiveness of the proposed control scheme is illustrated by the stabilization of delayed neural network systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes an improvement to the delay‐dependent stability of discrete systems with time‐varying delays. The approach is based on the observation that the positive definiteness of a chosen Lyapunov–Krasovskii functional does not necessarily require all the involved symmetric matrices to be positive definite, which has been overlooked in the literature. The derived delay‐dependent stability conditions are in terms of linear matrix inequalities. It is theoretically proved that our results are less conservative than the corresponding ones obtained by requiring the positive definiteness of all the symmetric matrices in a chosen Lyapunov–Krasovskii functional. The importance of the present approach is that a great number of delay‐dependent analysis and synthesis results obtained by the aforementioned requirement in the literature can be improved by the present approach without introducing any new decision variables. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with delay‐dependent stability for linear systems with time‐varying delays. By decomposing the delay interval into multiple equidistant subintervals, on which different Lyapunov functionals are chosen, and new Lyapunov‐Krasvskii functionals are then constructed. Employing these new Lyapunov‐Krasvskii functionals, some new delay‐dependent stability criteria are established. The numerical examples show that the obtained results are less conservative than some existing ones in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of H deconvolution filter design for a class of singular Markovian jump systems with time‐varying delays and parameter uncertainties is considered in this paper. By constructing a more comprehensive stochastic Lyapunov‐Krasovskii functional, novel delay‐dependent conditions are established to guarantee the filtering error system is not only stochastically admissible, but also satisfies a prescribed H‐norm level for all admissible uncertainties. The desired filter parameters can be obtained by solving a set of strict linear matrix inequalities. Two examples and an electrical RLC circuit example are employed to verify the effectiveness and usefulness of the proposed methods in the paper. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
This paper considers the problem of robust mixed H2/H delayed state feedback control for a class of uncertain neutral systems with time‐varying discrete and distributed delays. Based on the Lyapunov–Krasovskii functional theory, new required sufficient conditions are established in terms of delay‐range‐dependent linear matrix inequalities for the stability and stabilization of the considered system using some free matrices. The desired robust mixed H2/H delayed state feedback control is derived based on a convex optimization method such that the resulting closed‐loop system is asymptotically stable and satisfies H2 performance with a guaranteed cost and a prescribed level of H performance, simultaneously. Finally, a numerical example is given to illustrate the effectiveness of our approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This paper deals with the problem of obtaining delay‐dependent stability conditions and L2‐gain analysis for a class of nonlinear time‐delay systems with norm‐bounded and possibly time‐varying uncertainties. No restrictions on the derivative of the time‐varying delay are imposed, though lower and upper bounds of the delay interval are assumed to be known. A Lyapunov–Krasovskii functional approach is proposed to derive novel delay‐dependent stability conditions which are expressed in terms of linear matrix inequalities (LMIs). To reduce conservatism, the work exploits the idea of splitting the delay interval in multiple regions, so that specific conditions can be imposed to a unique functional in the different regions. This improves the computed bounds for certain delay‐dependent integral terms, providing less conservative LMI conditions. Examples are provided to demonstrate the reduced conservatism with respect to the available results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, the problem of robust sliding mode control for a class of linear continuous time‐delay systems is studied. The parametric uncertainty considered is a modelling error type of mismatch appearing in the state. A delay‐dependent sufficient condition for the existence of linear sliding surfaces is developed in terms of linear matrix inequality, based on which the corresponding reaching motion controller is designed. A numerical example is given to show the potential of the proposed techniques. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the problem of delay‐range‐dependent robust H filtering for systems with time‐varying delays in a range. The aim of this problem is to design a filter such that, for all admissible uncertainties, the filtering error system is robustly asymptotically stable with a prescribed H level. The desired filter can be constructed by solving a set of linear matrix inequalities (LMIs). An illustrative numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
In this paper, the problem of delay‐dependent stability for uncertain stochastic dynamic systems with time‐varying delay is considered. Based on the Lyapunov stability theory, improved delay‐dependent stability criteria for the system are established in terms of linear matrix inequalities. Three numerical examples are given to show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Distributed parameter networked control systems mean distributed parameter systems are controlled through a network, where the control loops are closed. In this paper, the problem of guaranteed cost and state feedback controller design is investigated for a class of distributed parameter networked control systems. With the network factors, such as transmission delays, data packet dropouts considered, the distributed parameter networked control system is modeled as a linear closed‐loop system with time‐varying delay and uncertain parameters. By selecting an appropriate Lyapunov‐Krasovskii function and using linear matrix inequality (LMI) approach, the controller is designed to render the system stable and it can keep the cost function less than a certain upper value. In addition, numerical simulation is included to demonstrate the theoretical results.  相似文献   

16.
It is well known that a delay‐dependent or delay‐independent truncated predictor feedback law stabilizes a general linear system in the presence of a certain amount of input delay. Results also exist on estimating the maximum delay bound that guarantees stability. In the face of a time‐varying or unknown delay, delay‐independent feedback laws are preferable over delay‐dependent feedback laws as the former provide robustness to the uncertainties in the delay. In the light of few results on the construction of delay‐independent output feedback laws for general linear systems with input delay, we present in this paper a delay‐independent observer–based output feedback law that stabilizes the system. Our design is based on the truncated predictor feedback design. We establish an estimate of the maximum allowable delay bound through the Razumikhin‐type stability analysis. An implication of the delay bound result reveals the capability of the proposed output feedback law in handling an arbitrarily large input delay in linear systems with all open‐loop poles at the origin or in the open left‐half plane. Compared with that of the delay‐dependent output feedback laws in the literature, this same level of stabilization result is not sacrificed by the absence of the prior knowledge of the delay.  相似文献   

17.
研究了一类不确定中立型变时滞系统的鲁棒稳定性问题。不确定性满足范数有界条件且时变。基于Lyapunov和自由权矩阵的方法,得到了系统的鲁棒稳定性判据,并表示成线性矩阵不等式的形式。最后,仿真结果表明本结论比一些现存的结果有了重要提高。  相似文献   

18.
By employing the information of the probability distribution of the time delay, this paper investigates the problem of robust stability for uncertain systems with time‐varying delay satisfying some probabilistic properties. Different from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delay is random and its probability distribution is known a priori. In terms of the probability distribution of the delay, a new type of system model with stochastic parameter matrices is proposed. Based on the new system model, sufficient conditions for the exponential mean square stability of the original system are derived by using the Lyapunov functional method and the linear matrix inequality (LMI) technique. The derived criteria, which are expressed in terms of a set of LMIs, are delay‐distribution‐dependent, that is, the solvability of the criteria depends on not only the variation range of the delay but also the probability distribution of it. Finally, three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of robust stability analysis for uncertain neutral systems. In terms of a linear matrix inequality (LMI), an improved delay‐dependent asymptotic stability criterion is developed without using bounding techniques on the related cross product terms. Based on this, a new delay‐dependent LMI condition for robust stability is obtained. Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses the adaptive finite‐time control problem of nonlinear teleoperation system in the presence of asymmetric time‐varying delays. To achieve the finite‐time position tracking, a novel adaptive finite‐time coordination algorithm based on subsystem decomposition is developed. By introducing a switching‐technique‐based error filtering into our design framework, the complete closed‐loop master (slave) teleoperation system is modeled as a special class of switched system, which is composed of two subsystems. To analyze such system, a finite‐time state‐independent input‐to‐output stability criterion is first developed for some normal switched nonlinear delayed systems. Then based on the classical Lyapunov–Krasovskii method, the stability of complete closed‐loop systems is obtained. It is shown that the proposed scheme can make the position errors converge into a deterministic domain in finite time when the robots continuously contact with human operator and/or the environment in the presence of asymmetric time‐varying delays. Finally, the simulation results are given to demonstrate the effectiveness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号