首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The g-C3N4/Fe3O4/Ag/Ag2SO3 nanocomposites have been successfully fabricated by facile refluxing method. The as-obtained products were characterized by XRD, EDX, SEM, TEM, UV–vis DRS, FT–IR, TGA, PL, and VSM techniques. The results suggest that the Ag/Ag2SO3 nanoparticles have anchored on the surface of g-C3N4/Fe3O4 nanocomposite, showing strong absorption in the visible region. The evaluation of photocatalytic activity indicates that for the g-C3N4/Fe3O4/Ag/Ag2SO3 (40%) nanocomposite, the degradation rate constant was 188 × 10?4 min?1 for rhodamine B, exceeding those of the g-C3N4 (16.0 × 10?4 min?1) and g-C3N4/Fe3O4 (20.2 × 10?4 min?1) by factors of 11.7 and 9.3, respectively. The results showed that the nanocomposite prepared by refluxing for 120 min has the superior photocatalytic activity and its activity decreased with rising the calcination temperature. The trapping experiments confirmed that superoxide ion radical was the main active species in the photocatalytic degradation process. Also, it was demonstrated that the magnetic photocatalyst has considerable activity in degradation of one more dye pollutant. Finally, the reusability of the photocatalyst was evaluated by five consecutive catalytic runs. This work may open up new insights into the utilization of magnetically separable nanocomposites and provide new opportunities for facile fabrication of g-C3N4-based plasmonic photocatalysts.  相似文献   

2.
Magnetic NiFe2O4/SBA-15 nanocomposites were synthesized by a facile impregnation method, and NiFe2O4 nanoparticles presented spinel phase structure and existed in the mesopores of SBA-15. Partial mesopores were blocked by NiFe2O4 nanoparticles and micropores formed, which the capillarity of micropores played a decisive role for methylene blue (MB) adsorption. The saturation magnetization increased from 2.34 emu g?1 to 10.03 emu g?1 with the NiFe2O4 content, while the specific surface area decreased from 552.18 m2 g?1 to 260.40 m2 g?1 and pore volume decreased from 1.13 cm3 g?1 to 0.49 cm3 g?1. MB adsorption could be improved by optimizing the NiFe2O4 content of the nanocomposites. MB could be adsorbed completely in 60 min with the optimum nanocomposites and could be separated easily from water by magnetic separation technique.  相似文献   

3.
The most effective parameters were found to obtain Au/Fe3O4 nano particles (NPs)-oleylamine composite. Having Au NPs with the controlled maximum mean size under the forced conditions was the main aim of this study. We used the continuous flow rates of oleylamine 75% to produce Au NPs under an open system by extended LaMer mechanisms. This process decreased the mean size of Fe3O4 NPs synthesized simultaneously, by classic LaMer mechanism. The Fe3O4 NPs production was carried out without continuous adding of any iron reactant, viz. as a closed system. In the absence of gold ions, the mean size of the synthesized Fe3O4 NPs using 2.5 ml/min oleylamine was about 35.0 nm at 2.0 ± 0.5 °C after 120 min. This mean size was decreased to 27.2, 21.4, 16.8 and 8.7 nm, when Au NPs were simultaneous prepared using 0.5, 0.75, 1.5 and 2.5 ml/min of oleylamine, respectively, at the same conditions. Surface Plasmon Resonance (SPR) adsorption was used to evaluate Au NPs production at first 30 min, while Small Angle X-ray Scattering (SAXS) method was used to monitor the reaction progression for near-real time analysis of increasing the growth of Au NPs up to 280 min, at the optimum conditions. Changing the properties of Fe3O4 NPs during processes was determined by studying Magnetization, Potentiometric titration, Inductive heating and Zeta potential.  相似文献   

4.
In this study, a series of novel quaternary g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites were fabricated. The prepared nanocomposites were characterized by XRD, EDX, SEM, TEM, UV-DRS, FT-IR, PL, TG, and VSM methods to gain insight about structure, purity, morphology, optical, thermal, and magnetic properties. Photocatalytic activity of the samples was investigated under visible-light irradiation by degradations of rhodamine B, methylene blue, methyl orange, and phenol as four organic pollutants. The highest photocatalytic degradation efficiency was observed when the sample calcined at 300 °C for 2 h with 20 wt% of Co3O4. The photocatalytic activity of this nanocomposite is almost 16.8, 15.7, 4.6, and 5.1 times higher than those of the g-C3N4, g-C3N4/Fe3O4, g-C3N4/Fe3O4/Ag3PO4 (20%), and g-C3N4/Fe3O4/Co3O4 (20%) samples in photodegradation of rhodamine B, respectively. Finally, on the basis of the energy band positions, the mechanism of enhanced photocatalytic activity was discussed.  相似文献   

5.
Several nanoporous Fe_2 O_3-xSx/S-doped g-C_3 N_4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe_2O_3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe_2 O_3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe_2 O_3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe_2 O_3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe_2 O_3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min~(-1) which was faster than those of the pure Fe_2 O_3(0.0016 min~(-1))and CNS(0.0044 min~(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe_2 O_3(6.6)/CNS hybrid are 33.5 m~2/g and0.195 cm~3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe_2 O_3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O_2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe_2 O_3(6.6)/CNS heterojunction between CNS and Fe_2 O_3 directly produces ·OH as well as ·O_2-radicals which is consistent with the results obtained from trapping experiments.  相似文献   

6.
Solid-state reaction method is a common and effective technique to synthesize ferrites. This work investigated the phase transformation of MnO2 and Fe2O3 system roasted at 500–1400 °C in air atmosphere to understand the formation process of manganese ferrite. The results showed that the formation of manganese ferrite (MnxFe3?xO4) was derived from the reaction between Fe2O3 and Mn3O4 (the decomposition product of MnO2). Below 900 °C, MnO2 firstly decomposed to Mn2O3 and then to Mn3O4, and Fe2O3 was seldom reacted with Mn2O3 and Mn3O4. When the temperature went up to 1000 °C, Fe2O3 easily reacted with Mn3O4 to generate manganese ferrite. The reaction degree was enhanced dramatically with the rising of temperature. Moreover, the x value in the MnxFe3?xO4 increased from 0 to 1 from 900 °C to 1400 °C. In other words, the higher the temperature was, the closer the MnxFe3?xO4 was to MnFe2O4. Thermodynamic analysis of MnO2-Fe2O3 system under different O2 partial pressures was carried out to further explain the formation mechanism.  相似文献   

7.
A sample of Fe2O3-doped 4MgH2-Li3AlH6 composite was prepared by the ball milling technique, and the hydrogen storage properties were investigated for the first time. Results showed that the addition of Fe2O3 powder reduced the decomposition temperature and improved de/hydrogenation kinetics compared with undoped 4MgH2-Li3AlH6. The onset decomposition temperature for the Fe2O3-doped 4MgH2-Li3AlH6 composite decreased by 75 °C compared with that of the undoped composite. For the sorption kinetics, a hydrogen absorption capacity of 2.4 wt% was reached after 60 min in the 10 wt% Fe2O3-doped 4MgH2-Li3AlH6 composite, whereas the neat composite absorbed 2.3 wt% hydrogen under the same conditions. For desorption kinetics, the Fe2O3-doped 4MgH2-Li3AlH6 sample released 2.5 wt% hydrogen under 10 min of dehydrogenation, but the neat 4MgH2-Li3AlH6 composite only desorbed 2.0 wt% hydrogen within the same period. The apparent activation energy calculated by Kissinger analysis for hydrogen desorption decreased to 112.9 kJ/mol after Fe2O3 was added compared with the undoped composite, which was 145.4 kJ/mol. The X-ray diffraction analysis shows the formation new phase of Li2Fe3O4 in the doped sample after ball milling processes that could act as the real catalyst in the Fe2O3-doped 4MgH2-Li3AlH6 composite.  相似文献   

8.
Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe3O4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe3O4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit.  相似文献   

9.
The purpose of this research was to synthesize amino modified Fe3O4/SiO2 nanoshells for biomedical applications. Magnetic iron-oxide nanoparticles (NPs) were prepared via co-precipitation. The NPs were then modified with a thin layer of amorphous silica. The particle surface was then terminated with amine groups. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g? 1 for uncoated Fe3O4 NPs and it increased to about 208 m2 g?1 for 3-aminopropyltriethoxysilane (APTS) coated Fe3O4/SiO2 NPs. The total thickness and the structure of core-shell was measured and studied by transmission electron microscopy (TEM). For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of (80–100) emu g?1 and coercivity of (80–120) Oe for particles between (35–96) nm, respectively. The Fe3O4/SiO2 NPs with 50 nm as particle size, demonstrated a magnetization value of 30 emu g?1. The stable magnetic fluid contained well-dispersed Fe3O4/SiO2/APTS nanoshells which indicated monodispersity and fast magnetic response.  相似文献   

10.
Six-armed Fe3O4 dendrites with carbon coating were synthesized by a simple one-step reaction between ferrocene and urea at 550 °C. Electron microscopy examinations indicate the formation of large numbers of Fe3O4 dendrites with mutually vertical arms and uniform carbon shells. Electrochemical measurement demonstrates that the dendrites using as anode materials for lithium-ion battery exhibit an initial capacity of 658 mAh g? 1 and a reversible capacity of 473 mAh g? 1 after 100 cycles at a rate of C/10, as well as a high cycling efficiency of 97% after the forth cycle. The formation mechanism of the six-armed dendrites was also discussed.  相似文献   

11.
Polyethylenimine (PEI) modified Fe3O4/Au nanoparticles were synthesized in aqueous solution and characterized by photo correlation spectroscopy (PCS) and vibrating sample magnetometer (VSM). The so-obtained Fe3O4/Au-PEI nanoparticles were capable of efficient electrostatic capture of DNA. The maximum amount of genomic DNA captured on 1.0 mg Fe3O4/Au-PEI nanoparticles was 90 μg. The DNA release behavior was studied and the DNA recovery from Fe3O4/Au-PEI nanoparticles approached 100% under optimal conditions. DNA extraction from mammalian cells using Fe3O4/Au-PEI nanoparticles was successfully performed. Up to approximately 43.1 μg of high-purity (OD260/OD280 ratio = 1.81) genomic DNA was extracted from 10 mg of liver tissue. The results indicated that the prepared Fe3O4/Au-PEI nanoparticles could be successfully used for DNA capture and release.  相似文献   

12.
Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles as a novel organic–inorganic hybrid heterogeneous catalyst was fabricated and characterized by XRD, FT-IR, TGA, TEM and VSM techniques. Composition was determined as Fe3O4, while particles were observed to have spherical morphology. Size estimations using X-ray line profile fitting (10 nm), TEM (11 nm) and magnetization fitting (9 nm) agree well, revealing nearly single crystalline character of Fe3O4 nanoparticles. Magnetization measurements reveal that PPCA functionalized Fe3O4 NPs have superparamagnetic features, namely immeasurable coercivity and absence of saturation. Small coercivity is established at low temperatures. The catalytic activity of Fe3O4–PPCA was probed through one-pot synthesis of nitro alkenes through Knoevenagel reaction in CH2Cl2 at room temperature. The heterogeneous catalyst showed very high conversion rates (97%) and could be recovered easily and reused many times without significant loss of its catalytic activity.  相似文献   

13.
High-temperature microwave absorbing materials are of great interest due to their ability to withstand high temperatures. Multi-walled carbon nanotubes (MWNTs) were surface modified by Ar plasma and Co0.5Ni0.5Fe2O4 nanoparticles were doped onto the surface of the MWNTs by a chemical co-precipitation method. Co0.5Ni0.5Fe2O4/MWNTs powders were then added to polyimide to prepare nanocomposites for microwave absorption. After plasma modification, the surface of the MWNTs produced carboxyl groups, which are beneficial for interfacial bonding between the MWNTs and PI. The glass transition temperature of the nanocomposites was 261 °C and their thermostability was preserved up to 500 °C. The maximum reflection loss (RL) value of nanocomposites containing 0.75 wt% modified MWNTs was ?24.37 dB and the frequency range where the RL value was less than ?10 dB was 5.1 GHz from 7.8 to 12.9 GHz.  相似文献   

14.
Monodisperse Fe3O4 magnetic nanoparticles (NPs) were prepared under facile solvothermal conditions and successively functionalized with silica and Au to form core/shell Fe3O4@silica@Au NPs. Furthermore, the samples were used as matrix to construct a glucose sensor based on glucose oxidase (GOD). The immobilized GOD retained its bioactivity with high protein load of 3.92 × 10? 9 mol·cm? 2, and exhibited a surface-controlled quasi-reversible redox reaction, with a fast heterogeneous electron transfer rate of 7.98 ± 0.6 s? 1. The glucose biosensor showed a broad linear range up to 3.97 mM with high sensitivity of 62.45 μA·mM? 1 cm? 2 and fast response (less than 5 s).  相似文献   

15.
Superparamagnetic Fe3O4/Au nanoparticles were synthesized and surface modified with mercaptopropionic acid (MPA), followed by conjugating Nα,Nα-Bis(carboxymethyl)-l-lysine hydrate (ANTA) and subsequently chelating Co2 +. The resulting Fe3O4/Au–ANTA–Co2 + nanoparticles have an average size of 210 nm in aqueous solution, and a magnetization of 36 emu/g, endowing the magnetic nanoparticles with excellent magnetic responsivity and dispersity. The Co2 + ions in the magnetic nanoparticle shell provide docking site for histidine, and the Fe3O4/Au–ANTA–Co2 + nanoparticles exhibit excellent performance in binding of a His-tagged protein with a binding capacity of 74 μg/mg. The magnetic nanoparticles show highly selective purification of the His-tagged protein from Escherichia coli lysate. Therefore, the obtained Fe3O4/Au–ANTA–Co2 + nanoparticles exhibited excellent performance in the direct separation of His-tagged protein from cell lysate.  相似文献   

16.
A novel magnetic nanosized adsorbent using hydrous aluminum oxide embedded with Fe3O4 nanoparticle (Fe3O4@Al(OH)3 NPs), was prepared and applied to remove excessive fluoride from aqueous solution. This adsorbent combines the advantages of magnetic nanoparticle and hydrous aluminum oxide floc with magnetic separability and high affinity toward fluoride, which provides distinctive merits including easy preparation, high adsorption capacity, easy isolation from sample solutions by the application of an external magnetic field. The adsorption capacity calculated by Langmuir equation was 88.48 mg g?1 at pH 6.5. Main factors affecting the removal of fluoride, such as solution pH, temperature, adsorption time, initial fluoride concentration and co-existing anions were investigated. The adsorption capacity increased with temperature and the kinetics followed a pseudo-second-order rate equation. The enthalpy change (ΔH0) and entropy change (ΔS0) was 6.836 kJ mol?1 and 41.65 J mol?1 K?1, which substantiates the endothermic and spontaneous nature of the fluoride adsorption process. Furthermore, the residual concentration of fluoride using Fe3O4@Al(OH)3 NPs as adsorbent could reach 0.3 mg L?1 with an initial concentration of 20 mg L?1, which met the standard of World Health Organization (WHO) norms for drinking water quality. All of the results suggested that the Fe3O4@Al(OH)3 NPs with strong and specific affinity to fluoride could be excellent adsorbents for fluoride contaminated water treatment.  相似文献   

17.
The structural, electrical and magnetic properties of LaCr0.5M0.5O3 (M = Cr3+, Cu2+ and Fe3+) synthesized by a sol–gel technique were studied. The X-ray diffraction pattern shows the structure to be orthorhombic and the size of the particles is around 100 nm as seen from the TEM images. The effects of Cu2+ and Fe3+ on the electrical properties of LaCrO3 were studied using impedance spectroscopy at room temperature (RT). The properties of LaCr0.5Cu0.5O3 were studied over a wide range of temperature from RT to 533 K. A maximum conductivity of 1.7 × 10?3 S cm?1 was observed for LaCr0.5Cu0.5O3 at a measured temperature of 533 K. The impedance spectra indicate a negative temperature coefficient of resistance (NTCR) and also imply the conduction is through bulk of the material. The magnetic studies performed using a SQUID magnetometer interpret the antiferromagnetically ordered LaCrO3 to behave ferromagnetically on the addition of Cu2+ and Fe3+, and the magnetization was found to be enhanced in the LaCr0.5Fe0.5O3.  相似文献   

18.
Reaction mechanisms, microstructures and tensile properties of the aluminum matrix composites made from Al-SiO2-Mg system were investigated. When the temperature increased from room temperature to around 761 K, Mg dissolved into Al to form Mg-Al alloy. As the temperature increased to about 850 K, the remaining Mg reacted with SiO2 to form MgO, Mg2Si and Si as expressed in step reaction I: 6Mg + 2SiO2  4MgO + Mg2Si + Si. Finally, with a further increase in temperature, the remaining SiO2 reacted with Al to produce Al2O3 and Si, while MgO reacted with Al2O3 to form MgAl2O4 as expressed in step reaction II: 4Al + 3SiO2 + 2MgO  2MgAl2O4 + 3Si. The Si also dissolved into matrix Al to form Al-Si alloy. Accordingly, its reaction process consisted of two steps and their apparent activation energies were 218 kJ/mol and 192 kJ/mol, respectively. As compared to the composites prepared by Al-SiO2 system, its density increased from 2.4 to 2.6 g/cm3, and its tensile strength and elongation increased from 165 MPa and 3.95% to 187 MPa and 7.18%, respectively.  相似文献   

19.
《Materials Research Bulletin》2006,41(7):1364-1369
In situ polymerization of pyrrole was carried out in the presence of γ–Fe2O3 (FE) to synthesize polypyrrole–γ–Fe2O3 composites (PPy/FE) by chemical oxidation method. The PPy/FE composites have been synthesized with various compositions viz., 10, 20, 30, 40 and 50 wt.% of γ–Fe2O3 in pyrrole. The AC conductivity was studied in the frequency range 102–107 Hz. The dielectric behaviour was also investigated in the frequency range 102–107 Hz. The dimensions of γ–Fe2O3 particles in the matrix have a greater influence on the conductivity values and the observed dielectric values.  相似文献   

20.
The results of current investigation demonstrate that mechanochemical processing can be used to synthesize high purity Fe2B nanocrystals by selecting well-optimized milling conditions, reaction paths and proper starting materials. Microstructure, phase analyses, specific surface area, and magnetic properties of the synthesized nanocrystals were examined by using X-ray diffraction/spectroscopy, electron microscopy, nitrogen adsorption–desorption methods following Brunauer-Emmett-Teller equation and vibrating sample magnetometer techniques, respectively. Removal of MgO impurity phase by leaching the resulting powder in the acetic acid solution yielded single phase Fe2B nanocrystals with the crystallite size and specific surface area of 12.5 nm and 29 m2/g, respectively. Magnetization results clearly indicated the ferromagnetic behavior of Fe2B nanocrystals with saturation magnetization observed around 96.26 emu·g?1. Electron microscope images revealed coaxial/spherical powder shape and morphology of the single-phase Fe2B nanocrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号