首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
压电复合梁热机电耦合有限元模型   总被引:1,自引:0,他引:1  
蒋建平  李东旭 《振动与冲击》2007,26(10):19-22,40
压电材料应用于航天结构形状或振动控制时,可能会受到热场、力场和电场的共同作用。为分析处于热场、力场和电场共同作用下的压电复合结构,文中基于高阶剪切变形理论、高阶电势模型和线性温度分布假设,利用虚功原理建立了压电复合梁结构的热-机-电耦合有限元模型。该模型可应用于热机电耦合压电复合结构的形状与振动控制研究。利用本文模型对压电双晶片梁、压电复合悬臂梁进行了数值仿真,仿真结果与文献给出的理论结果和实验值吻合良好,表明本文模型是正确有效的。  相似文献   

2.
A simplified model for the analysis of ceramic-metal composite actuators has been developed. The model consists of two beams symmetrically arranged about the actuator neutral axis and attached to the actuator at the ends with an offset (Moonie shape). When an electrical field is applied such that the actuator will contract, a compressive force and a moment, due to the beams' eccentricity, are applied to the beams. This loading will produce the desired deformation of the beams. Using the beam-column theory and the appropriate boundary conditions, it is possible to derive a set of equations relating the free induced strain (Λ) of the actuator to the midspan displacement of the beams. Nonlinear terms which allow for the interaction of the developed in-plane force with the out-of-plane displacements have been included in the equations. Applying these equations to a particular case, it is found that the offset distance of the beams has a large impact on the behavior of the system. An increase in the offset distance produces both a suitable augmentation of the moment applied to the beams and an undesirable diminution of the midspan displacement for a given free induced strain. From these two positive anti negative effects, an optimum value of the offset distance is found. Additionally, it is found that with a transverse load applied to the beams, the optimum offset distance is further increased. Furthermore, the nonlinear terms in the governing equations are found to have only a small impact on the system in the free induced strain range of typical actuator materials, i.e., Λ⩽1500 μstrain. Thus, in conclusion, the effect of the offset distance of the beams to the actuator is the primary design criteria when maximum displacement of the actuator is required  相似文献   

3.
Topology optimization of large deformation two‐dimensional continua is presented using a combined gradient‐stochastic search with negative circular masks. The possibility of generating perfect black and white topologies is explored while attaining the efficiency of first‐order and second‐order search algorithms. The design region is modeled with honeycomb tessellation to thwart the known connectivity singularities such as the checkerboards and point flexures. Mask shrinkage is incorporated for ease in density transition between gradient and stochastic steps. Notches at continuum boundaries are moderated through multiple use of a simple boundary smoothing method. A neo‐Hookean elasticity model is employed to simulate the material nonlinearities in large displacement continua. With examples on stiff beams and large deformation compliant mechanisms, it is illustrated that perfectly binary, connected and smooth topologies can be obtained within a few hundred design evaluations.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Propagation of flat-topped multi-Gaussian laser beams   总被引:9,自引:0,他引:9  
The multi-Gaussian beam shape is proposed as a model for aperture functions and laser beam profiles that have a nearly flat top but whose sides decrease continuously. Beams and apertures of this type represent a simple, elegant, and intuitive alternative to super-Gaussian beams, which are important in a number of applications such as laser resonator design. Analytical formulas are developed for the propagation of these beams through free space and optical systems representable by ABCD matrices.  相似文献   

5.
High‐water‐content hydrogels that are both mechanically robust and conductive could have wide applications in fields ranging from bioengineering and electronic devices to medicine; however, creating such materials has proven to be extremely challenging. This study presents a scalable methodology to prepare superelastic, cellular‐structured nanofibrous hydrogels (NFHs) by combining alginate and flexible SiO2 nanofibers. This approach causes naturally abundant and sustainable alginate to assemble into 3D elastic bulk NFHs with tunable water content and desirable shapes on a large scale. The resultant NFHs exhibit the integrated properties of ultrahigh water content (99.8 wt%), complete recovery from 80% strain, zero Poisson's ratio, shape‐memory behavior, injectability, and elastic‐responsive conductivity, which can detect dynamic pressure in a wide range (>50 Pa) with robust sensitivity (0.24 kPa?1) and durability (100 cycles). The fabrication of such fascinating materials may provide new insights into the design and development of multifunctional hydrogels for various applications.  相似文献   

6.
In this paper a general solution for the analysis of plates stiffened by parallel beams subjected to an arbitrary loading is presented. According to the proposed model, the stiffening beams are isolated from the plate by sections in the lower outer surface of the plate, taking into account the arising tractions in all directions at the fictitious interfaces. The aforementioned integrated tractions result in the loading of the beams as well as the additional loading of the plate. Their distribution is established by applying continuity conditions in all directions at the interfaces. The analysis of both the plate and the beams is accomplished on their deformed shape taking into account second‐order effects. Six boundary value problems with respect to the plate transverse deflection, to the plate inplane displacement components, to the beam transverse deflections, to the beam axial deformation and to the beam non‐uniform angle of twist are formulated and solved using the analog equation method (AEM), a boundary element method (BEM)‐based method employing a boundary integral equation approach. The solution of the aforementioned plate and beam problems, which are non‐linearly coupled, is achieved using iterative numerical methods. The adopted model describes better the actual response of the plate beams system and permits the evaluation of the shear forces at the interfaces in both directions, the knowledge of which is very important in the design of prefabricated ribbed plates. The evaluated lateral deflections of the plate–beams system are found to exhibit considerable discrepancy from those of other models, which neglect inplane and axial forces and deformations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes three novel displacement‐based formulations for the analysis of composite beams with a flexible connection which is capable of deforming along the longitudinal axis of the member as well as vertically, i.e. transverse to the interface connection. For completeness, the analytical model which forms the basis of the proposed modelling technique is presented in both its weak and strong forms. The three novel finite element formulations are derived and tested using different structural systems; their nodal freedoms include the vertical and axial displacements as well as the rotations at each element end of both layers. Curvature locking problems are observed to occur for one of these elements and the origin of this behaviour is demonstrated analytically. Two applications are then proposed adopting a bi‐linear constitutive relationship for the vertical interface connection to reflect the more realistic case in which, already in the linear‐elastic range of the materials forming the cross‐section and of the longitudinal interface connection, two vertical connection stiffnesses are required, i.e. one to model the event of separation between the layers and one when one bears against the other one. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
The advantages of organic field‐effect transistors, such as low cost, mechanical flexibility and large‐area fabrication, make them potentially useful for electronic applications such as flexible switching backplanes for video displays, radio frequency identifications and so on. A large amount of molecules were designed and synthesized for electron transporting (n‐type) and ambipolar organic semiconductors with improved performance and stability. In this review, we focus on the advances in performance and molecular design of n‐type and ambipolar semiconductors reported in the past few years.  相似文献   

9.
In this study, a method for completely eliminating the presence of transverse shear locking in the application of the element‐free Galerkin method (EFGM) to shear‐deformable beams and plates is presented. The matching approximation fields concept of Donning and Liu has shown that shear locking effects may be prevented if the approximate rotation fields are constructed with the innate ability to match the approximate slope (first derivative of displacement) fields and is adopted. Implementation of the matching fields concept requires the computation of the second derivative of the shape functions. Thus, the shape functions for displacement fields, and therefore the moving least‐squares (MLS) weight function, must be at least C1 continuous. Additionally, the MLS weight functions must be chosen such that successive derivatives of the MLS shape function have the ability to exactly reproduce the functions from which they were derived. To satisfy these requirements, the quartic spline weight function possessing C2 continuity is used in this study. To our knowledge, this work is the first attempt to address the root cause of shear locking phenomenon within the framework of the element‐free Galerkin method. Several numerical examples confirm that bending analyses of thick and thin beams and plates, based on the matching approximation fields concept, do not exhibit shear locking and provide a high degree of accuracy for both displacement and stress fields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a non‐local viscoelastic foundation model is proposed and used to analyse the dynamics of beams with different boundary conditions using the finite element method. Unlike local foundation models the reaction of the non‐local model is obtained as a weighted average of state variables over a spatial domain via convolution integrals with spatial kernel functions that depend on a distance measure. In the finite element analysis, the interpolating shape functions of the element displacement field are identical to those of standard two‐node beam elements. However, for non‐local elasticity or damping, nodes remote from the element do have an effect on the energy expressions, and hence the damping and stiffness matrices. The expressions of these direct and cross‐matrices for stiffness and damping may be obtained explicitly for some common spatial kernel functions. Alternatively numerical integration may be applied to obtain solutions. Numerical results for eigenvalues and associated eigenmodes of Euler–Bernoulli beams are presented and compared (where possible) with results in literature using exact solutions and Galerkin approximations. The examples demonstrate that the finite element technique is efficient for the dynamic analysis of beams with non‐local viscoelastic foundations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
任意开口薄壁截面圆弧曲梁的通用线性理论   总被引:2,自引:1,他引:1  
许强  童根树 《工程力学》2002,19(6):141-147
在曲梁精确的翘曲位移基础上,根据变分原理,提出了对任意开口薄壁截面圆弧曲梁通用的线性理论,给出平衡微分方程和相应的边界条件。定义了两个新的变量vH和qH,借助它们可以很方便地计算曲梁中的剪力和扭矩。最后就该理论在常见截面形式(工字形,槽形及无对称轴H形)水平曲梁中的应用进行说明,并与已有理论进行比较。  相似文献   

12.
Accurate prediction of fatigue failure times of materials such as fracture and plastic deformation at various stress ranges has a strong bearing on practical fatigue design of materials. In this study, we propose a novel genetic‐based iterative quantile regression (GA‐IQR) algorithm for analyzing fatigue curves that represent a nonlinear relationship between a given stress amplitude and fatigue life. We reduce the problem to a linear framework and develop the iterative algorithm for determining the model coefficients including unknown fatigue limits. The procedure keeps updating the estimates in a direction to reduce its resulting error. Also, our approach benefits from the population‐based stochastic search of the genetic algorithms so that the algorithm becomes less sensitive to its initialization. Compared with conventional approaches, the proposed GA‐IQR requires fewer assumptions to develop fatigue model, capable of exploring the data structure in a relatively flexible manner. All procedures and calculations are quite straightforward, such that the proposed quantile regression model has a high potential value in a wide range of applications for exploring nonlinear relationships with lifetime data. Computational results for real data sets found in the literature present good evidences to support the argument. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Designing limited diffraction beams   总被引:1,自引:0,他引:1  
Theoretically, limited diffraction beams can only be produced with an infinite aperture. In practice, they can be closely approximated with a finite aperture over a large depth of field. Because of this property, these beams could have applications in medical imaging, tissue characterization, Doppler velocity estimation, and nondestructive evaluation (NDE) of materials, as well as other physics-related areas such as electromagnetics and optics. In this paper, a new method is developed to design limited diffraction beams of desired beam shapes within a finite aperture of interest. It uses previously discovered limited diffraction beams such as Bessel beams and X waves as basis functions, and constructs new beams with linear superpositions of the bases. To construct a new beam of a desired shape, coefficients of the basis functions in the linear superposition are chosen so that the difference between the new beam and a desired beam is minimized under the criterion of least-squares error within the aperture. This procedure is implemented by digitizing both the basis beams and desired beams in the aperture and solving a system of linear equations from its normal equation. The method is applied to several desired beams that are limited diffraction beams known previously. Results show that the designed beams and the desired beams are virtually identical. If the desired beams are not solutions to the wave equation, the designed beams are new limited diffraction beams that are similar in shapes to the desired beams. This suggests that the method may be a powerful and practical tool for developing new limited diffraction beams of desired properties.  相似文献   

14.
Achieving multifunctional shape‐changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid–ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self‐healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape‐changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.  相似文献   

15.
This paper is concerned with the development of mesh‐free models for the static analysis of smart laminated composite beams. The overall smart composite beam is composed of a laminated substrate composite beam and a piezoelectric layer attached partially or fully at the top surface of the substrate beam. The piezoelectric layer acts as the distributed actuator layer of the smart beam. A layer‐wise displacement theory and an equivalent single‐layer theory have been used to derive the models. Several cross‐ply substrate beams are considered for presenting the numerical results. The responses of the smart composite beams computed by the present new mesh‐free model based on the layer‐wise displacement theory excellently match with those obtained by the exact solutions. The mesh‐free model based on the equivalent single‐layer theory cannot accurately compute the responses due to transverse actuation by the piezoelectric actuator. The models derived here suggest that the mesh‐free method can be efficiently used for the numerical analysis of smart structures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
A novel finite‐element modelling code developed to investigate the structural behaviour of nonwoven materials is presented. The technique allows modelling of a nonwoven fabric as a continuous–discontinuous medium with a given pattern of bond points and a large number of constituent fibres with arbitrary orientation distribution. The parametric feature of the code provides automatic modelling of nonwoven materials according to design parameters in a very efficient way. The effect of fibre length is also included for the first time in a finite element model of a nonwoven. The developed code is very flexible and it is possible to be extended to further studies such as damage behaviour.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This article reviews several classes of inorganic semiconductor materials that can be used to form high‐performance thin‐film transistors (TFTs) for large area, flexible electronics. Examples ranging from thin films of various forms of silicon to nanoparticles and nanowires of compound semiconductors are presented, with an emphasis on methods of depositing and integrating thin films of these materials into devices. Performance characteristics, including both electrical and mechanical behavior, for isolated transistors as well as circuits with various levels of complexity are reviewed. Collectively, the results suggest that flexible or printable inorganic materials may be attractive for a range of applications not only in flexible but also in large‐area electronics, from existing devices such as flat‐panel displays to more challenging (in terms of both cost and performance requirements) systems such as large area radiofrequency communication devices, structural health monitors, and conformal X‐ray imagers.  相似文献   

18.
The aim of the present work is to develop a new finite element model for the finite strain analysis of plate structures constituted of shape memory alloy (SMA) material. A three‐dimensional constitutive model for shape memory alloys able to reproduce the special thermomechanical behavior of SMA characterized by pseudoelasticity and shape memory effects is adopted. The finite strain constitutive model is thermodynamically consistent and is completely formulated in the reference configuration. A two‐dimensional plate theory is proposed based on a tensor element shape function formulation. The displacement field is expressed in terms of increasing powers of the transverse coordinate. The equilibrium statement is formulated on the basis of the virtual displacement principle in a total Lagrangian format. The proposed displacement formulation is particularly suitable for the simple derivation of high‐order finite elements. Numerical applications are performed to assess the efficiency and locking performance of the proposed plate finite element. Some additional numerical examples are carried out to study the accuracy and robustness of the proposed computational technique and its capability of describing the structural response of SMA devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin‐like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long‐term use. Thermal‐radiation‐assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer‐scale format through a one‐step process. As a proof of concept, both long‐term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号