共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Fangqiong Tang Linlin Li Dong Chen 《Advanced materials (Deerfield Beach, Fla.)》2012,24(12):1504-1534
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle‐type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano‐based targeted cancer therapy and MSN‐based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused. 相似文献
3.
4.
Juan L. Vivero‐Escoto Igor I. Slowing Brian G. Trewyn Victor S.‐Y. Lin 《Small (Weinheim an der Bergstrasse, Germany)》2010,6(18):1952-1967
The application of nanotechnology in the field of drug delivery has attracted much attention in the latest decades. Recent breakthroughs on the morphology control and surface functionalization of inorganic‐based delivery vehicles, such as mesoporous silica nanoparticles (MSNs), have brought new possibilities to this burgeoning area of research. The ability to functionalize the surface of mesoporous‐silica‐based nanocarriers with stimuli‐responsive groups, nanoparticles, polymers, and proteins that work as caps and gatekeepers for controlled release of various cargos is just one of the exciting results reported in the literature that highlights MSNs as a promising platform for various biotechnological and biomedical applications. This review focuses on the most recent progresses in the application of MSNs for intracellular drug delivery. The latest research on the pathways of entry into live mammalian and plant cells together with intracellular trafficking are described. One of the main areas of interest in this field is the development of site‐specific drug delivery vehicles; the contribution of MSNs toward this topic is also summarized. In addition, the current research progress on the biocompatibility of this material in vitro and in vivo is discussed. Finally, the latest breakthroughs for intracellular controlled drug release using stimuli‐responsive mesoporous‐silica‐based systems are described. 相似文献
5.
Srivani Veeranarayanan Aby Cheruvathoor Poulose M. Sheikh Mohamed Saino Hanna Varghese Yutaka Nagaoka Yasuhiko Yoshida Toru Maekawa D. Sakthi Kumar 《Small (Weinheim an der Bergstrasse, Germany)》2012,8(22):3476-3489
The targeting and therapeutic efficacy of dye‐ and dual‐drug‐loaded silica nanoparticles, functionalized with triple targeting ligands specific towards cancer and neoangiogenesis simultaneously, are discussed. This synergized, high‐precision, multitarget concept culminates in an elevated uptake of nanoparticles by cancer and angiogenic cells with amplified proficiency, thereby imparting superior therapeutic efficacy against breast cancer cells and completely disabling the migration and angiogenic sprouting ability of activated endothelial cells. The exceptional multimodal efficiency achieved by this single therapeutic nanoformulation holds promise for the synergistic targeting and treatment of the yet elusive cancer and its related angiogenesis in a single, lethal shot. 相似文献
6.
Donna Mahony Antonino S. Cavallaro Frances Stahr Timothy J. Mahony Shi Zhang Qiao Neena Mitter 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(18):3138-3146
Immunization to the model protein antigen ovalbumin (OVA) is investigated using MCM‐41 mesoporous silica nanoparticles as a novel vaccine delivery vehicle and adjuvant system in mice. The effects of amino surface functionalization and adsorption time on OVA adsorption to nanoparticles are assessed. Amino‐functionalized MCM‐41 (AM‐41) shows an effect on the amount of OVA binding, with 2.5‐fold increase in binding capacity (72 mg OVA/g AM‐41) compared to nonfunctionalized MCM‐41 (29 mg OVA/g MCM‐41). Immunization studies in mice with a 10 μg dose of OVA adsorbed to AM‐41 elicits both antibody and cell‐mediated immune responses following three subcutaneous injections. Immunizations at a lower 2 μg dose of OVA adsorbed to AM‐41 particles results in an antibody response but not cell‐mediated immunity. The level of antibody responses following immunization with nanoformulations containing either 2 μg or 10 μg of OVA are only slightly lower than that in mice which receive 50 μg OVA adjuvanted with QuilA, a crude mixture of saponins extracted from the bark of the Quillaja saponaria Molina tree. This is a significant result, since it demonstrates that AM‐41 nanoparticles are self‐adjuvanting and elicit immune responses at reduced antigen doses in vivo compared to a conventional delivery system. Importantly, there are no local or systemic negative effects in animals injected with AM‐41. Histopathological studies of a range of tissue organs show no changes in histopathology of the animals receiving nanoparticles over a six week period. These results establish the biocompatible MCM‐41 silica nanoparticles as a new method for vaccine delivery which incorporates a self‐adjuvant effect. 相似文献
7.
Bioinspired Diselenide‐Bridged Mesoporous Silica Nanoparticles for Dual‐Responsive Protein Delivery 下载免费PDF全文
Dan Shao Mingqiang Li Zheng Wang Xiao Zheng Yeh‐Hsing Lao Zhimin Chang Fan Zhang Mengmeng Lu Juan Yue Hanze Hu Huize Yan Li Chen Wen‐fei Dong Kam W. Leong 《Advanced materials (Deerfield Beach, Fla.)》2018,30(29)
Controlled delivery of protein therapeutics remains a challenge. Here, the inclusion of diselenide‐bond‐containing organosilica moieties into the framework of silica to fabricate biodegradable mesoporous silica nanoparticles (MSNs) with oxidative and redox dual‐responsiveness is reported. These diselenide‐bridged MSNs can encapsulate cytotoxic RNase A into the 8–10 nm internal pores via electrostatic interaction and release the payload via a matrix‐degradation controlled mechanism upon exposure to oxidative or redox conditions. After surface cloaking with cancer‐cell‐derived membrane fragments, these bioinspired RNase A‐loaded MSNs exhibit homologous targeting and immune‐invasion characteristics inherited from the source cancer cells. The efficient in vitro and in vivo anti‐cancer performance, which includes increased blood circulation time and enhanced tumor accumulation along with low toxicity, suggests that these cell‐membrane‐coated, dual‐responsive degradable MSNs represent a promising platform for the delivery of bio‐macromolecules such as protein and nucleic acid therapeutics. 相似文献
8.
Core‐Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra‐large Cavity for Protein Delivery 下载免费PDF全文
Chun Xu Meihua Yu Owen Noonan Jun Zhang Hao Song Hongwei Zhang Chang Lei Yuting Niu Xiaodan Huang Yannan Yang Chengzhong Yu 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(44):5949-5955
A new type of monodispersed mesoporous silica nanoparticles with a core–cone structure (MSN‐CC) has been synthesized. The large cone‐shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN‐CC has a large pore size of 45 nm and a high pore volume of 2.59 cm3 g−1. MSN‐CC demonstrates a high loading capacity of large proteins and successfully delivers active β‐galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights. 相似文献
9.
10.
11.
Jie Lu Monty Liong Zongxi Li Jeffrey I. Zink Fuyuhiko Tamanoi 《Small (Weinheim an der Bergstrasse, Germany)》2010,6(16):1794-1805
Mesoporous silica nanoparticles (MSNs) are a promising material for drug delivery. In this Full Paper, MSNs are first shown to be well tolerated, as demonstrated by serological, hematological, and histopathological examinations of blood samples and mouse tissues after MSN injection. Biodistribution studies using human cancer xenografts are carried out with in vivo imaging and fluorescent microscopy imaging, as well as with inductively coupled plasma mass spectroscopy. The results show that MSNs preferentially accumulate in tumors. Finally, the drug‐delivery capability of MSNs is demonstrated by following tumor growth in mice treated with camptothecin‐loaded MSNs. These results indicate that MSNs are biocompatible, preferentially accumulate in tumors, and effectively deliver drugs to the tumors and suppress tumor growth. 相似文献
12.
13.
Combined Delivery of Temozolomide and Anti‐miR221 PNA Using Mesoporous Silica Nanoparticles Induces Apoptosis in Resistant Glioma Cells 下载免费PDF全文
Alessandro Bertucci Eko Adi Prasetyanto Dedy Septiadi Alex Manicardi Eleonora Brognara Roberto Gambari Roberto Corradini Luisa De Cola 《Small (Weinheim an der Bergstrasse, Germany)》2015,11(42):5687-5695
14.
15.
Gee Young Lee Hari Krishna Sajja Weiping Qian Zehong Cao Weiling He Prasanthi Karna Xiaoyuan Chen Hui Mao Y. Andrew Wang Lily Yang 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(11):1964-1973
Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double‐stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor‐targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double‐stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor‐mediated internalization should enhance the therapeutic effect of the siRNA‐mediated cancer therapy. 相似文献
16.
Eun‐Bum Cho Dmytro O. Volkov Igor Sokolov 《Small (Weinheim an der Bergstrasse, Germany)》2010,6(20):2314-2319
The first successful approach to synthesizing ultrabright fluorescent mesoporous silica nanoparticles is reported. Fluorescent dye is physically entrapped inside nanochannels of a silica matrix created during templated sol–gel self‐assembly. The problem of dye leakage from open channels is solved by incorporation of hydrophobic groups in the silica matrix. This makes the approach compatible with virtually any dye that can withstand the synthesis. The method is demonstrated using the dye Rhodamine 6G. The obtained 40‐nm silica particles are about 30 times brighter than 30‐nm coated water‐soluble quantum dots. The particles are substantially more photostable than the encapsulated organic dye itself. 相似文献
17.
18.
近年来,介孔氧化硅纳米粒子(MSN)以其均一的孔道结构、高比表面积、较大的孔容量等优良性质,被广泛应用于药物传递系统。与传统载药系统相比,MSN展示了更高的药物负载量、可控的药物控释性能、可设计的靶向特性、良好的生物安全性等优势。本文通过对MSN对药物的负载机理、药物控释机理等方面的介绍,对MSN在药物传递系统中的应用加以综述。 相似文献
19.
Cuie Chen Li Zhou Jie Geng Jinsong Ren Xiaogang Qu 《Small (Weinheim an der Bergstrasse, Germany)》2013,9(16):2793-2800
A novel light‐operated vehicle for targeted intracellular drug delivery is constructed using photosensitizer‐incorporated G‐quadruplex DNA‐capped mesoporous silica nanoparticles. Upon light irradiation, the photosensitizer generates ROS, causing the DNA capping to be cleaved and allowing cargo to be released. Importantly, this platform makes it possible to develop a drug‐carrier system for the synergistic combination of chemotherapy and PDT for cancer treatment with spatial/temporal control. Furthermore, the introducing of targeting ligands further improves tumor targeting efficiency. The excellent biocompatibility, cell‐specific intracellular drug delivery, and cellular uptake properties set up the basis for future biomedical application that require in vivo controlled, targeted drug delivery. 相似文献
20.
Safe and Effective Reversal of Cancer Multidrug Resistance Using Sericin‐Coated Mesoporous Silica Nanoparticles for Lysosome‐Targeting Delivery in Mice 下载免费PDF全文
Jia Liu Qilin Li Jinxiang Zhang Lei Huang Chao Qi Luming Xu Xingxin Liu Guobin Wang Lin Wang Zheng Wang 《Small (Weinheim an der Bergstrasse, Germany)》2017,13(9)
Multidrug resistance (MDR) and adverse side effects are the major challenges facing cancer chemotherapy. Here, pH/protease dually responsive, sericin‐coated mesoporous silica nanoparticles (SMSNs) for lysosomal delivery of doxorubicin (DOX) to overcome MDR and reduce systemic toxicity are reported. Sericin, a natural protein from silkworm cocoons, is coated onto MSNs as a gatekeeper via pH sensitive imine linkages. The sericin shell prevents the premature leakage of encapsulated DOX from MSNs in extracellular environment. Once reaching drug‐resistant tumors, sericin's cell‐adhesive bioactivity enhances cellular uptake of SMSNs that are in turn transported into perinuclear lysosomes, thus avoiding drug efflux mediated by membrane‐bound pumps. Lysosomal acidity triggers cleavage of pH sensitive linkage between sericin and MSNs concurrently with lysosomal proteases deconstructing sericin shell. This pH/protease dual responsiveness leads to DOX burst release into cell nuclei, inducing effective cell death, thus reversing MDR. These DOX‐loaded SMSNs not only effectively kill drug‐resistant cells in vitro, but also significantly reduce the growth of DOX‐resistant MCF‐7/ADR (breast cancer cells) tumor by 70% in a preclinical animal model without eliciting systemic toxicity frequently encountered in current clinical therapeutic formulations. Thus, the dually responsive SMSNs are an effective, lysosome‐tropic, and bio‐safe delivery system for chemotherapeutics for combating MDR. 相似文献