首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of woven betel palm and kenaf lignocellulosic fibers as a reinforcing phase in unsaturated polyester was reported. The morphology, physical properties, and mechanical properties of the natural fibers and resulting woven composites were evaluated. Kenaf fibers exhibit higher tensile properties than betel palm fibers due to the higher amount of cellulose content. From the morphology observation, it is found that the alkaline treatment of the fibers effectively clean the fiber surface and increase the fiber surface roughness. Comparison between treated and untreated woven betel palm and kenaf composites at 7 vol% of fiber content was carried out. Interestingly, untreated woven kenaf composites exhibit comparable flexural strength with those of untreated woven betel palm composites. However, untreated kenaf composites exhibit superior flexural modulus to those of betel palm composites. In general, mechanical properties of the woven composites made from alkali-treated fibers were superior to the untreated fibers.  相似文献   

2.
In this study, engineering thermoplastic composites were prepared from natural fiber blend–filled nylon 6. Natural fiber blend from a mixture of kenaf, flax, and hemp fibers were added to nylon 6 using melt mixing to produce compounded pellets. The natural fibers/ nylon6 composites with varying concentrations of natural fibers (from 5 to 20 wt%) were prepared by injection molding. The tensile and flexural properties of the nylon 6 composites were increased significantly with the addition of the natural fiber blend. The maximum strength and modulus of elasticity for the nylon 6 composites were achieved at a natural fiber blend weight fraction of 20%. The Izod impact strength of composites decreased with the incorporation of natural fibers without any surface treatments and coupling agent. The melt flow index (MFI) also decreased with increasing natural fiber blend loading. The results of tensile and flexural modulus of elasticity (FMOE) are in accordance with the rheological data from the MFI measurements. The increase in the tensile and flexural properties indicated that efficient bonding occurred between the natural fibers and nylon 6. No fiber pullout was observed during the scanning electron microscopic analysis of the fracture surfaces. The higher mechanical results with lower density demonstrate that a natural fiber blend can be used as a sufficient reinforcing material for low‐cost, eco‐friendly composites in the automotive industry and in other applications such as the building and construction industries, packaging, consumer products, etc.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
Betel nut leaf fiber (BNLF) is a new finding as cellulosic filler for polymer composites. Its main constituents are 75% α‐cellulose, 12% hemicelluloses, 10% lignin, and 3% others matter, viscosity average molecular weight 132,000 and degree of crystallinity 70%. In the present work, BNLF reinforced polypropylene (PP) composites were prepared using heat press molding method. 5–20 wt% short length fiber is taken for getting benefits of easy manufacturing and the fiber was chemically treated with NaOH, dicumyl peroxide (DCP), and maleic anhydride‐modified PP (MAPP) to promote the interfacial bond with PP. The extent of modification of fiber was assessed on the basis of morphology, bulk density, moisture absorption, thermal, and mechanical properties of untreated fiber, treated fiber, and their reinforcing PP composites. The tensile and flexural strength of composites increase with the increase of fiber loading up to 10 and 20 wt%, respectively. It was also observed that Young's modulus and flexural modulus increase with fiber loading. The thermal degradation behavior of resulting composites was investigated. Among the various treated fibers, MAPP‐treated fiber composite showed best interfacial interactions as well as mechanical and thermal properties. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

4.
Light‐weight composites reinforced with whole chicken feathers have better flexural strength than composites reinforced with feather fibers (barbs) and nearly thrice higher tensile strength and seven times higher tensile modulus than composites reinforced with powdered chicken feather quill. Chicken feathers are not only inexpensive and abundantly available but also have unique properties such as low density and hollow centers that make them preferable as reinforcement materials, especially for light‐weight composites. However, the traditional methods of developing composites do not provide the flexibility of using feathers in their native form as reinforcement. So far, the components in feathers such as barbs or quills have been used separately and/or feathers have been mechanically processed to destroy their native form in order to use feathers as reinforcement in composites. A new method of making composites using nonwoven webs as matrix allows the incorporation of reinforcing materials in their native form such as whole chicken feathers to develop composites. This research shows that whole chicken feathers can be used as reinforcement in composites with better flexural, tensile, and acoustic properties than composites made from processed chicken feathers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The aim of this work is to study the effect of kenaf volume content and fiber orientation on tensile and flexural properties of kenaf/Kevlar hybrid composites. Hybrid composites were prepared by laminating aramid fabric (Kevlar 29) with kenaf in three orientations (woven, 0o/90o cross ply uni‐directional (UD), and non‐woven mat) with different kenaf fiber loadings from 15 to 20% and total fiber loading (Kenaf and Kevlar) of 27–49%. The void content varies between 11.5–37.7% to laminate with UD and non‐woven mat, respectively. The void content in a woven kenaf structure is 16.2%. Tensile and flexural properties of kenaf/Kevlar hybrid composites were evaluated. Results indicate that UD kenaf fibers reinforced composites display better tensile and flexural properties as compared to woven and non‐woven mat reinforced hybrid composites. It is also noticed that increasing volume fraction of kenaf fiber in hybrid composites reduces tensile and flexural properties. Tensile fracture of hybrid composites was morphologically analysed by scanning electron microscopy (SEM). SEM micrographs of Kevlar composite failed in two major modes; fiber fracture by the typical splitting process along with, extensive longitudinal matrix and interfacial shear fracture. UD kenaf structure observed a good interlayer bonding and low matrix cracking/debonding. Damage in composite with woven kenaf shows weak kenaf‐matrix bonding. Composite with kenaf mat contains the high void in laminates and poor interfacial bonding. These results motivate us to further study the potential of using kenaf in woven and UD structure in hybrid composites to improve the ballistic application, for example, vehicle spall‐liner. POLYM. COMPOS., 36:1469–1476, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Natural cellulose fibers with cellulose content, strength, and elongation higher than that of milkweed floss and between that of cotton and linen have been obtained from the stems of common milkweed plants. Although milkweed floss is a unique natural cellulose fiber with low density, the short length and low elongation make milkweed floss unsuitable as a textile fiber. The possibility of using the stems of milkweed plant as a source for natural cellulose fibers was explored in this research. Natural cellulose fibers extracted from milkweed stems have been characterized for their composition, structure, and properties. Fibers obtained from milkweed stems have about 75% cellulose, higher than the cellulose in milkweed floss but lower than that in cotton and linen. Milkweed stem fibers have low % crystallinity when compared with cotton and linen but the strength of the fibers is similar to cotton and elongation is higher than that of linen fibers. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

7.
Renewable raw materials and recyclable thermoplastic polymers provide attractive eco-friendly quality as well as environmental sustainability to the resulting natural fiber reinforced composites. We studied the possibility of using the recycled polypropylene (PP) for production of composites based on kenaf fibers (KF) and rice hulls (RH) as reinforcements. Polypropylene/rice-hulls (PP/RH/CA) and polypropylene/kenaf (PP/K/CA) composites with 30% fiber (filler) content and appropriate compatibilizing agent (CA)—a maleic anhydride grafted PP (MAPP), have been prepared by two steps procedure: melt mixing and compression molding. Flexural strength and thermal stability of the composites with recycled PP were similar to those with neat PP. The composites reinforced with kenaf fibers have shown better properties than those based on rice hulls. The flexural strength of the composite sample with recycled PP is 51.3 MPa in comparison with 51.1 MPa for the composite with neat PP. Degradation temperatures of neat and composite with recycled PP at residual weight 90% are 344.4°C and 343.5°C, respectively. The results obtained report the possibility of utilization of recycled PP for the production of natural reinforcements based composites with good mechanical characteristics for using as construction building materials in housing systems.  相似文献   

8.
Abstract

Natural fibers are potentially a high‐performance non‐abrasive reinforcing fiber source. In this study, pulp fibers [including bleached Kraft pulp (BKP) and thermomechanical pulp (TMP)], hemp, flax, and wood flour were used for reinforcing in polypropylene (PP) composite. The results show that pulp fibers, in particular, TMP‐reinforced PP has the highest tensile strength, possibly because pulp fibers were subjected to less severe shortening during compounding, compared to hemp and flax fiber bundles. Maleic‐anhydride grafted PP (MAPP) with high maleic anhydride groups and high molecular weight was more effective in improving strength properties of PP composite as a compatiblizer. Coupled with 10% glass fiber, 40% TMP reinforced PP had a tensile strength of 70 MPa and a specific tensile strength comparable to glass fiber reinforced PP. Thermomechanical pulp was more effective in reinforcing than BKP. X‐ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) were used to aid in the analysis. Polypropylene with high impact strength was also used in compounding to improve the low‐impact strength prevalent in natural fiber‐reinforced PP from injection molding.  相似文献   

9.
This research investigates the physical and mechanical properties of hybrid composites made of epoxy reinforced by kenaf and flax natural fibers to investigate the hybridization influences of the composites. Pure and hybrid composites were fabricated using bi-directional kenaf and flax fabrics at different stacking sequences utilizing the vacuum-assisted resin infusion method. The pure and hybrid composites' physical properties, such as density, fiber volume fraction (FVF), water absorption capacity, and dimensional stability, were measured. The tests of tensile, flexural, interlaminar shear and fracture toughness (Mode II) were examined to determine the mechanical properties. The results revealed that density remained unchanged for the hybrid compared to pure kenaf/epoxy composites. The tensile, flexural, and interlaminar shear performance of flax/epoxy composite is improved by an increment of kenaf FVF in hybrid composites. The stacking sequence significantly affected the mechanical properties of hybrid composites. The highest tensile strength (59.8 MPa) was obtained for FK2 (alternative sequence of flax and kenaf fibers). However, FK3 (flax fiber located on the outer surfaces) had the highest interlaminar shear strength (12.5 MPa) and fracture toughness (3302.3 J/m2) among all tested hybrid composites. The highest water resistance was achieved for FK5 with the lowest thickness swelling.  相似文献   

10.
Whole hop bines (HBs), the peeled outer bark (OB) of HBs, and fibers chemically extracted from hop bark (HFs) were used as reinforcements to make lightweight composites with polypropylene (PP) webs or fibers as the matrix materials. Using discarded HBs for composites not only increases the value of hop crops but also provides a green, sustainable, and biodegradable material for the composite industry. Lightweight composites are preferred, especially for automotive applications because of the potential energy savings. In this research, the effects of the processing parameters on the properties of PP composites reinforced with HBs were studied. The composites reinforced with OB without any chemical treatment showed better properties than the composites reinforced with HFs or HBs. Compared with jute–PP composites of the same density (0.47 g/cm3), composites reinforced with OB had 43% higher flexural strength, 46% higher impact resistance, 56% higher Young's modulus, similar modulus of elasticity, 33% lower tensile strength, and better sound‐absorption properties. OB–PP composites with optimized properties have the potential to be used in industrial applications such as support layers in automotive interiors, ceiling tiles, and office panels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The present study investigates the tensile, flexural, notched Izod impact, and water absorption properties of bagasse and beech reinforced polypropylene (PP) composites as a function of fiber content. The surface of fibers was modified through the use of maleated polypropylene (MAPP) coupling agent. From this study, it was found that mechanical properties increase with an increase in fiber loading in both cases. However, the addition of wood fibers resulted in a decrease in impact strength of the composites. The water absorption property at varying fiber loading was evaluated and found maximum for the BA/PP composites. The weight gains for all specimens were less than 7%. In general, the results showed the usefulness of bagasse fiber as a good alternative and reinforcing agent for composite. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
BACKGROUND: Renewable resources and recyclable thermoplastic polymers provide an attractive eco‐friendly quality as well as environmental sustainability to the resulting natural fibre‐reinforced composites. The properties of polypropylene (PP)‐based composites reinforced with rice hulls or kenaf fibres were investigated with respect to their recyclability. Rice hulls from rice processing plants and natural lignocellulosic kenaf fibres from the bast of the plant Hibiscus cannabinus represent renewable sources that could be utilized for composites. Maleic anhydride‐grafted PP was used as a coupling agent to improve the interfacial adhesion between fillers and matrix. Composites containing 30 wt% reinforcement were manufactured by melt mixing and their mechanical and thermal properties were determined. The composites were then pelletized and reprocessed by melt mixing. Finally, structure/properties relationships were investigated as a function of the number of reprocessing cycles. RESULTS: It is found that the recycling processes do not induce very significant changes in flexural strength and thermal stability of the composites. In particular PP‐based composites reinforced with kenaf fibres are less sensitive to reprocessing cycles with respect to PP‐based composites reinforced with rice hulls. CONCLUSION: The response of PP‐based composites reinforced with rice hulls or kenaf fibres is promising since their properties remain almost unchanged after recycling processes. Moreover, the recycled composites are suitable for applications as construction materials for indoor applications. In fact, the flexural strength and modulus of these materials are comparable to those of conventional formaldehyde wood medium‐density fibreboards. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber‐matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH‐PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I–II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film‐stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp‐ and flax‐PP model composites with mercerized, MAH‐PP‐treated, or MAH‐PP‐treated mercerized yarns. The composites' properties were verified by tensile and flexural tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2150–2156, 2004  相似文献   

14.
Two kinds of retted Canadian linseed flax fibers, dew‐retted (F1) and enzyme‐retted flax fibers (F2) were characterized in detail for their applications in composites, such as retting degree, thermal stability, tensile strength, and interfacial behavior in polypropylene (PP) matrix. It's clear from Scanning Electron Micrograph that the aspect ratio of F2 was much higher than that of F1 in the light of their separated elementary fibers in most cases. Instead, the elementary fibers of F1 remained tightly bundled into technical fiber wrapping with more non‐cellulose portions. This reflected its lower retting degree and resulted in its lower thermal stability. Single fiber tensile test and single fiber pull‐out test were used to evaluate the fiber tensile properties and fiber/PP interfacial shear strength, respectively. Better retting degree and fewer damages on F2 endowed F2 better tensile property. Consequently, higher aspect ratio, retting degree, and tensile strength proved F2 to be a kind of better reinforcing material than F1 for composites. POLYM. ENG. SCI., 2012. 2011 published by Society of Plastics Engineers  相似文献   

15.
采用剑麻纤维(SF)和长玻璃纤维(LGF)混杂增强聚丙烯(PP)复合材料,考察了SF/LGF的比例和含量对PP复合材料力学性能的影响。结果表明:SF/LGF在聚丙烯树脂基体中呈交叉网状分布,这有利于提高复合材料的冲击强度、弯曲模量、拉伸强度和软化点。在SF/LGF质量比为2 2∶,二者总质量分数为30%时,SF/LGF混杂增强PP复合材料的综合力学性能较好。  相似文献   

16.
《Ceramics International》2022,48(5):6808-6818
In this study, experimental investigations were carried out to estimate the mechanical and microstructural properties of polypropylene (PP) and steel fiber reinforced geopolymer mortar. Two industrial by-products are used as binders to produce the geopolymer composites, i.e., fly ash (FA) and ground granulated blast furnace slag (GGBFS). Different percentages of PP and steel fibers are used in geopolymer mortars to find the mechanical properties such as compressive, splitting tensile and flexural strengths were investigated to understand the strength behavior. However, the compressive elastic modulus values were estimated through the proposed equation based on the compressive strength of the fiber reinforced geopolymer composite samples. Moreover, to understand the geopolymeic reaction, microstructural studies, i.e., scanning electron microscopy (SEM), were conducted. The experimental results revealed that the addition of PP fibers up to 2.0% (volume fraction) enhanced the flexural properties of geopolymer mortar samples. The compressive strength of the steel fiber-reinforced geopolymer composite reached a maximum of 2.5% volume fraction, being a 13.26% improvement over the control mix. The flexural toughness index of the PP and steel fiber reinforced composites improved with increasing the fraction. However, steel fiber reinforced geopolymer samples are shown better flexural toughness compared to PP fibers. The SEM analysis of the geopolymer control mix achieved a good degree of geopolymerization and both the fibers yielded a considerable interfacial bonding with the geopolymer paste.  相似文献   

17.
Cellulose fiber‐reinforced phenolic composites were prepared and characterized by mechanical tests and morphological analysis in this study. First, preparation of the phenolic matrix was optimized using an experimental design. The variables studied were curing temperature and time. The responses measured were strength, elongation, modulus, and strain energy density, in tensile and flexural tests. After fixing the optimal curing conditions of the matrix at 75°C and 2.75 h, the effect of a latest drying stage was studied. Strengths in tensile and flexural tests of the matrix after the incorporation of the drying stage were 156 and 189% of the strengths of the undried matrix, and elastic moduli were three‐fold. Finally, cellulose fibers were incorporated as reinforcement. Alkali treatment of the fibers (1 and 5% NaOH), employment of silanes as coupling agents [(3‐aminopropyl) trimethoxysilane (APS) and 3‐(2‐aminoethylamino) propyltrimethoxysilane (AAPS)], and combined treatments alkali‐silane were tested. The AAPS silane treated cellulose fiber‐reinforced phenolic composite was the material with the best mechanical performance and adhesion fiber–matrix. The most significant improvements obtained with the AAPS silane treatment of the fibers were 25, 52, and 110% for tensile strength, elongation, and SED, respectively, in relation to the unreinforced material properties. POLYM. ENG. SCI., 54:2228–2238, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
The surface properties of polypropylene (PP) fibers have an important effect on their reinforcing efficiency in cementitious composites. Two new methods of modifying the surface of subdenier monofilament polypropylene fibers were introduced, as well as the performances of the fiber‐reinforced mortar. The results show that the surface modification improved the mechanical performance of the fiber‐reinforced mortars, such as compressive strength and flexural strength, and the reinforcing efficiency depends on the adopted method. The enhanced interfacial bonding between treated fibers and the cementitious matrix, compared with that of unmodified fibers, was investigated using scanning electronic microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2637–2641, 2004  相似文献   

19.
A natural fiber hybrid composite containing equal proportions of kenaf fibers (KFs) and wood flour (WF) as the reinforcements and polypropylene (PP) as the polymer matrix was prepared, and its static and dynamic mechanical properties were compared with KF/PP and WF/PP composites. Static tensile and flexural tests and dynamic mechanical analysis (DMA) were carried out. The hybrid composite exhibited tensile and flexural moduli and strength values closer to those of the KF composite, which indicated a higher reinforcing efficiency of KFs compared with WF. DMA revealed that although the glass‐transition temperature remained unchanged by the replacement of half of the WF by KFs, the α‐transition temperature of the hybrid composite was identical to that of WF composite. The magnitudes of both the α and β (glass) transitions of the hybrid composite were comparable to that of the WF/PP composite. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 665–672, 2005  相似文献   

20.
Kenaf fiber‐reinforced unsaturated polyester (UPE) composites were prepared by compression molding. A novel compatibilizer was prepared from melamine, formaldehyde, and acrylamide. The treatment of kenaf fibers with the compatibilizer significantly increased the flexural properties and reduced the water uptake of the resulting kenaf–UPE composites. The effects of the total solids content, the molar ratios of melamine/formaldehyde/acrylamide, and the pH value of the compatibilizer solution in the treatment of kenaf fibers on the flexural strength, flexural modulus, as well as the water uptake of the kenaf–UPE composites were studied in detail. Fourier transform infrared spectra revealed that the compatibilizer was covalently bonded to kenaf fibers. Scanning electron microscopy images of the fractured kenaf–UPE composites confirmed that the treatment of kenaf fibers with the compatibilizer improved the interfacial adhesion between kenaf fibers and UPE resin. The mechanisms for the improved flexural properties and the reduced water uptake by the treatments of the kenaf fibers were proposed and discussed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号