首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the effects of feeding conventional corn silage (CCS) or brown midrib corn silage (BMCS) to dairy cows on CH4 emissions from stored manure. Eight lactating cows were fed (ad libitum) a total mixed ration (forage:concentrate ratio 65:35; dry matter basis) containing 59% (dry matter basis) of either CCS or BMCS. Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the incubation period. The total amount of feces and urine excreted was higher for cows fed BMCS than for cows fed CCS [8.6 vs. 6.5 kg/d of volatile solids (VS)]. Manure from cows fed BMCS emitted more CH4 than manure from cows fed CCS (173 vs. 146 L/kg of VS) throughout the incubation period. Similarly, VS and neutral detergent fiber losses throughout incubation were higher for manure from cows fed BMCS versus cows fed CCS (37.6 vs. 30.6% and 46.2 vs. 31.2%, respectively). Manure NH3 concentration (79% of total manure N) was not affected by corn silage cultivar. Results of this study show that using a more digestible corn silage cultivar (BMCS vs. CCS) may increase the contribution of manure to CH4 emissions, and may offset gain achieved by reducing enteric CH4 emissions.  相似文献   

2.
We studied the effects of mechanical processing and type of hybrid on the nutritive value of corn silage for lactating cows. Treatments were brown midrib (BMR) corn silage that was unprocessed (U-BMR), BMR corn silage that was processed (P-BMR), and a conventional corn silage that was processed (P-7511). All silages were harvested at a theoretical chop length of 19 mm. The chemical compositions of the silages were similar among treatments except that BMR silages were lower in lignin and higher in protein than P-7511. Brown midrib silages had greater 30-h in situ and in vitro NDF digestion than did P-7511, and processing had no effect on 30-h in situ and in vitro fiber digestion, but it increased in situ starch digestion after 3 and 12 h of incubation. Both processed silages had a smaller proportion of particles >1.91 cm and fewer whole corn kernels compared with unprocessed silage. Lactating cows were fed a total mixed ration (TMR) consisting of 42% of each silage type, 40% concentrate, 10% alfalfa silage, and 8% alfalfa hay (DM basis). Cows fed TMR containing P-BMR ate more DM and produced more milk than cows fed P-7511. At feeding, the TMR containing U-BMR had a larger proportion of particles >1.91 cm when compared with the TMR of cows fed processed silages, and after 24 h the difference was even greater, indicating that cows fed unprocessed corn silage sorted more. Cows fed TMR with P-7511 and P-BMR had greater total tract digestibility of organic matter, crude protein, and starch compared with cows fed U-BMR. In vivo digestibility of neutral detergent fiber was greatest for cows fed P-BMR when compared with the other treatments.  相似文献   

3.
Total mixed rations containing brown midrib sorghum-sudangrass silage (bmrSS) or corn silage (CS) at either 35 or 45% of dietary dry matter were fed to Holstein dairy cows to determine the effect on lactational performance and nutrient digestibility. Twelve cows were assigned to 1 of 4 diets in replicated 4 × 4 Latin squares with 21-d periods. In vitro 30-h neutral detergent fiber digestion, measured before the start of the trial, was 46.0% for CS and 58.3% for bmrSS. Dry matter intake was greatest when cows were fed the 35% CS (23.4 kg/d) and 45% CS (23.2 kg/d) diets, was least when cows were fed the 45% bmrSS diet (17.6 kg/d), and was intermediate when cows were fed the 35% bmrSS diet (20.1 kg/d). The bmrSS diets resulted in greater body weight gain per 21-d period but similar body condition scores compared with the CS diets. Yield of solids-corrected milk (SCM) was similar among the diets. Efficiency (SCM:dry matter intake) was 28% greater for cows fed the bmrSS than those fed the CS diets. In vivo digestibilities of organic matter and crude protein were greater for the CS diets than the bmrSS diets, but total tract digestibilities of neutral detergent fiber and starch were similar among diets. Ruminal pH was greater when cows were fed the 45% bmrSS diet (6.58), was least when cows were fed the 35% CS (6.10) and 45% CS diets (6.13), and was intermediate when cows were fed the 35% bmrSS diet (6.42). The ratio of acetate to propionate was greater for the bmrSS diets (2.77) than for the CS diets (2.41), with no difference among diets in total volatile fatty acid concentrations (122 mM). In conclusion, cows fed bmrSS had greater efficiency of SCM production, higher ruminal pH, and greater acetate to propionate ratios than cows fed CS. With these diets fed in a short-term study, bmrSS appeared to be an effective alternative to the CS hybrid when fed at either 35 or 45% of dietary dry matter.  相似文献   

4.
The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH3) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH4 emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average = 19.8 g/kg) or gross energy intake (average = 5.83%) was not affected by increasing AS inclusion in the diet. When expressed on a fat-corrected milk or energy-corrected milk yield basis, CH4 production increased linearly with increasing AS dietary proportion. Urinary N excretion (g/d) increased linearly when cows were fed increasing amounts of AS in the diet, suggesting a potential for higher nitrous oxide (N2O) and NH3 emissions. Efficiency of dietary N use for milk protein secretion (g of milk N/g of N intake) declined with the inclusion of AS in the diet. Despite marked differences in chemical composition and ruminal degradability, under the conditions of this study, replacing TS with AS in dairy cow diets was not effective in reducing CH4 energy losses.  相似文献   

5.
This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance.  相似文献   

6.
A brown midrib (BMR) hybrid and a silage-specific non-BMR (7511FQ) hybrid were harvested at a normal cut height leaving 10 to 15 cm of stalk in the field. The non-BMR hybrid was also cut at a greater height leaving 45 to 50 cm of stalk. Cutting high increased the concentrations of dry matter (+4%), crude protein (+5%), net energy for lactation (+3%), and starch (+7%), but decreased the concentrations of acid detergent fiber (−9%), neutral detergent fiber (−8%), and acid detergent lignin (−13%) for 7511FQ. As expected, the BMR corn silage was 30% lower in lignin concentration than 7511FQ. After 30 h of in vitro ruminal fermentation, the digestibility of neutral detergent fiber for normal cut 7511FQ, the same hybrid cut high, and the normal cut BMR hybrid were 51.7, 51.4, and 63.5%, respectively. Twenty-seven multiparous lactating cows were fed a total mixed ration composed of the respective silages (45% of dry matter) with alfalfa haylage (5%), alfalfa hay (5%), and concentrate (45%) (to make the TMR isocaloric and isonitrogenous) in a study with a 3 × 3 Latin square design with 21-d periods. Milk production was greater for cows fed the BMR hybrid (48.8 kg/d) compared with those fed the normal cut 7511FQ (46.8 kg/d) or cut high (47.7 kg/d). Dry matter intake was not affected by treatment. Feed efficiency for cows fed the BMR silage (1.83) was greater than for those fed high-cut 7511FQ (1.75), but was not different from cows fed the normal cut 7511FQ (1.77). Cows fed the BMR silage had milk with greater concentrations of lactose but lower milk urea nitrogen than cows on other treatments. Harvesting a silage-specific, non-BMR corn hybrid at a high harvest height improved its nutritive content, but the improvement in feeding value was not equivalent to that found when cows were fed BMR corn silage.  相似文献   

7.
Eight intact multiparous cows and four ruminally and duodenally cannulated primiparous cows were fed four diets in a replicated 4 x 4 Latin square design: 1) 17% forage neutral detergent fiber (NDF) with brown midrib corn silage (BMRCS), 2) 21% forage NDF with BMRCS, 3) 17% forage NDF with conventional corn silage (CCS), and 4) 21% forage NDF with CCS. Diets contained 17.4% crude protein and 38.5% NDF. Each period consisted of 4 wk for intact cows and 2 wk for cannulated cows. For intact cows, DM intake was higher for BMRCS than CCS, and milk urea N was higher for 21 than 17% forage NDF. Milk protein yield tended to be higher and milk urea N lower for cows fed BMRCS than those fed CCS. Milk yield and milk protein percentage were similar among treatments. For the cannulated cows, ruminal mat consistency was similar among treatments. Based on a 72 h in situ incubation, BMRCS was lower in indigestible NDF than CCS. The BMRCS resulted in a higher proportion of ruminal propionate than CCS. Cows fed 21% forage NDF had a higher proportion of acetate and a lower proportion of propionate than cows fed 17% forage NDF. The total tract digestibility of nutrients and efficiency of bacterial N synthesis were similar among treatments, except that BMRCS resulted in lower intestinal fatty acid digestibility than CCS, and 17% forage NDF tended to result in higher total tract fatty acid digestibility than 21% forage NDF. Ruminal NDF digestibility was similar among dietary treatments. The increased milk production observed from feeding BMRCS in some studies may be explained by higher DM intake rather than increased total tract digestibility of the diets.  相似文献   

8.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36 ± 6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.  相似文献   

9.
Twenty midlactation Holstein cows (4 ruminally fistulated) averaging 101 ± 34 d in milk and weighing 674 ± 77 kg were used to compare rations with brown midrib corn silage (bm3) to rations with dual-purpose control silage (DP) on N utilization and milk production. The effect of monensin in these rations was also examined. Animals were assigned to one of five 4 × 4 Latin squares with treatments arranged in a 2 × 2 factorial. Cows were fed 1 of 4 treatments during each of the four 28-d periods. Treatments were 1) 0 mg/d monensin and bm3 corn silage, 2) 0 mg/d monensin and DP corn silage, 3) 300 mg/d monensin and bm3 corn silage, and 4) 300 mg/d monensin and DP corn silage. In vitro 30-h neutral detergent fiber (NDF) digestibility was greater for bm3 corn silage (61.0 vs. 49.1 ± 0.62). Dry matter intake (DMI) tended to be greater for cows consuming bm3 corn silage (21.3 vs. 20.2 kg/d). Neither hybrid nor monensin affected milk production, fat, or protein (37.7 kg, 3.60%, or 3.04%). Monensin tended to increase rumen pH (5.89 vs. 5.79 ± 0.07) compared with the control treatment. In addition, bm3 corn silage resulted in a significant decrease in rumen pH (5.72 vs. 5.98 ± 0.07). Supplementing monensin had no effect on molar proportions of acetate, propionate, or butyrate. In contrast, an increase was observed in branched-chain volatile fatty acids. No treatment interactions were observed for rumen pH or molar proportion of propionate but monensin decreased the molar proportion of acetate and increased the molar proportion of butyrate when cattle consumed bm3 silage. Dry matter, N, and acid detergent fiber digestibility were lower for the bm3 ration, whereas NDF digestibility was not different between treatments. There was no effect of hybrid on microbial protein synthesis (1,140 g/d) as estimated by urinary concentration of purine derivatives. Cows consuming bm3 excreted more fecal N than cows consuming DP (38.2 vs. 34.4% N intake); however, based on spot sampling, estimated urinary and manure N were not different between treatments (35.8 and 71.9% N intake). Monensin had no effect on DMI, digestibility of any nutrients, or N metabolism, and there were no hybrid by monensin interactions. Rations including bm3 corn silage tended to increase DMI but did not affect production. The reduction in the digestibility of some nutrients when cows consumed bm3 may have been caused by increased DMI and possible increased digestion in the lower gut. This increase in DMI appeared to also have negatively affected N digestibility but not NDF digestibility. This resulted in a greater amount of N excreted in feces but did not affect total mass of manure N.  相似文献   

10.
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source.  相似文献   

11.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on ruminal fermentation and microbial efficiency of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber and 30% starch. Increasing ruminal starch digestibility by replacing vitreous corn grain with floury grain reduced mean and minimum ruminal pH. Brown midrib 3 corn silage reduced mean and minimum ruminal pH and increased total volatile fatty acid concentration. Ruminal pH was positively associated with rate of valerate absorption. Although floury endosperm reduced acetate:propionate ratio in both control and bm3 corn silage diets, it had a greater effect on reducing acetate:propionate ratio for control silage compared with bm3 corn silage. Nonammonia N flow to the duodenum did not differ among treatments and no effects of treatment were detected for microbial N and nonammonia, nonmicrobial N flow. Although treatment effects on ruminal fermentation and ruminal pH were observed, few interactions of treatment were detected and treatments did not affect flow of N fractions to the intestines.  相似文献   

12.
Twenty-four lactating Holstein cows were used in a 6-wk randomized block design trial with a 2 × 2 factorial arrangement of treatments to determine the effects of feeding ground corn (GC) or steam-flaked corn (SFC) in diets based on either annual ryegrass silage (RS) or a 50:50 blend of annual ryegrass and corn silages (BLEND). Experimental diets contained 49.6% forage and were fed as a total mixed ration once daily for 4 wk after a 2-wk preliminary period. No interactions were observed among treatments. Cows fed BLEND consumed more dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) than those fed RS, but total-tract digestibility of OM, NDF, and ADF was greater for RS than for BLEND. No differences in nutrient intake were observed among treatments during wk 4 when nutrient digestibility was measured, but digestibility of DM and OM was greater for SFC than for GC. Cows fed BLEND tended to produce more energy-corrected milk than those fed RS, resulting in improved efficiency (kg of milk per kg of DM intake). When diets were supplemented with SFC, cows consumed less DM and produced more milk that tended to have lower milk fat percentage. Yield of milk protein and efficiency was greatest with SFC compared with GC. Blood glucose and milk urea nitrogen concentrations were similar among treatments, but blood urea nitrogen was greater for cows fed GC compared with those fed SFC. Results of this trial indicate that feeding a blend of annual ryegrass and corn silage is more desirable than feeding diets based on RS as the sole forage. Supplementing diets with SFC improved performance and efficiency compared with GC across forage sources.  相似文献   

13.
Forty-eight mid-lactation Holstein cows were used in a 6-wk completely randomized block design trial with a 4 × 3 factorial arrangement of treatments to determine the effects of feeding different proportions of corn silage and ryegrass silage with supplemental ground corn (GC), steam-flaked corn (SFC), and hominy feed (HF) on the performance of lactating dairy cows. Forage provided 49% of the dietary dry matter in the experimental diets, which were formulated to meet National Research Council requirements. Ryegrass silage provided 100, 75, 50, or 25% of the total forage dry matter, with corn silage supplying the remainder. There were no interactions between the proportion of forage provided by ryegrass silage and energy supplement. Dry matter intake and milk protein percentage decreased linearly with increasing proportions of ryegrass silage, but milk protein yield was similar among forage treatments. There were no differences among forage treatments in milk yield, milk fat percentage and yield, and energy-corrected milk yield. Dry matter intake was higher and there was a tendency for increased milk fat percentage for GC compared with SFC or HF. No other differences were observed in milk yield or composition among energy supplements. Plasma urea nitrogen and glucose concentrations were similar among treatments. Under the conditions of this trial, our results indicate that feeding a combination of corn silage and ryegrass silage is more desirable than feeding ryegrass silage alone, whereas supplementation with GC, SFC, or HF supports similar levels of milk production.  相似文献   

14.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

15.
The primary objective of this study was to determine lactation performance by dairy cows fed nutridense (ND), dual-purpose (DP), or brown midrib (BM) corn silage hybrids at the same concentration in the diets. A secondary objective was to determine lactation performance by dairy cows fed NutriDense corn silage at a higher concentration in the diet. One hundred twenty-eight Holstein and Holstein × Jersey cows (105 ± 38 d in milk) were stratified by breed and parity and randomly assigned to 16 pens of 8 cows each. Pens were then randomly assigned to 1 of 4 treatments. Three treatment total mixed rations (TMR; DP40, BM40, and ND40) contained 40% of dry matter (DM) from the respective corn silage hybrid and 20% of DM from alfalfa silage. The fourth treatment TMR had ND corn silage as the sole forage at 65% of DM (ND65). A 2-wk covariate adjustment period preceded the treatment period, with all pens receiving a TMR with equal proportions of DP40, BM40, and ND40. Following the covariate period, cows were fed their assigned treatment diets for 11 wk. nutridense corn silage had greater starch and lower neutral detergent fiber (NDF) content than DP or BM, resulting in ND40 having greater energy content (73.2% of total digestible nutrients, TDN) than DP40 or BM40 (71.9 and 71.4% TDN, respectively). Cows fed BM40 had greater milk yield than DP40, whereas ND40 tended to have greater milk yield and had greater protein and lactose yields compared with DP40. No differences in intake, component-corrected milk yields, or feed efficiency were detected between DP40, BM40, and ND40. Milk yield differences may be due to increased starch intake for ND40 and increased digestible NDF intake for BM40 compared with DP40. Intake and milk yield and composition were similar for ND40 compared with BM40, possibly due to counteracting effects of higher starch intake for ND40 and higher digestible NDF intake for BM40. Feeding ND65 reduced intake, and thus milk and component yields, compared with ND40 due to either increased ruminal starch digestibility or increased rumen fill for ND65. Nutridense corn silage was a viable alternative to both DP and BM at 40% of diet DM; however, lactation performance was reduced when nutridense corn silage was fed at 65% of DM.  相似文献   

16.
A meta-analysis was conducted to compare the effects of feeding dairy cows conventional sorghum silage (CSS) or conventional corn silage (CCS) compared with brown midrib sorghum silage (BMRSS) diets on dry matter intake (DMI), milk production, and milk composition. Data from 9 published articles (1984 to 2015) were used to contrast diets with CSS (7 means comparisons; 104 cows) or CCS (13 means comparisons; 204 cows) versus BMRSS diets. Statistical analysis was performed using fixed or random effects models with the Metafor package of R (https://www.R-project.org). The degree of heterogeneity was measured with the I2 statistic, and publication bias was determined with funnel plots and Egger's regression test. Other sources of heterogeneity of response were analyzed through meta-regression. Estimated effect size was calculated for DMI, milk production, and milk composition. No evidence of publication bias was observed for any variable tested. The highest degree of heterogeneity (I2 = 41.5 and 72.6%) was observed for DMI among dependent variables tested in both comparisons, indicating that intake responses to silage type are rather inconsistent; in contrast, milk production had the lowest degree of heterogeneity (I2 = 0%), supporting the idea that the responses of this variable to silage type were very consistent across studies. Compared with BMRSS diets, cows fed CSS diets exhibited decreased milk production (1.64 kg/d), milk fat concentration (0.09%), milk fat yield (0.08 kg/d), milk protein yield (0.04 kg/d), and milk lactose yield (0.16 kg/d) and tended to decrease DMI (0.83 kg/d). Compared with CCS diets, cows fed BMRSS diets increased milk fat concentration (0.10%), but decreased milk protein concentration (0.06%) and tended to increase lactose yield (0.08 kg/d). Meta-regression indicated that days in milk affected DMI and milk production when CSS diets were compared with BMRSS diets, and DMI when CCS diets were compared with BMRSS diets. Additionally, the inclusion rate of silage in the diet and dietary neutral detergent fiber affected yields of milk fat and lactose, respectively, when CCS and BMRSS diets were compared. Overall, lactation performance improved when cows were fed diets formulated with BMRSS compared with CSS, but performance was not different for cows fed BMRSS and CCS diets. However, the small sample size may have influenced these results by increasing the margin of the error and, concurrently, the power of the meta-analysis. Results of this analysis suggest that additional research is needed to explore the effects of days in milk and the inclusion rates of silages in the diets when comparing BMRSS with CSS or CCS.  相似文献   

17.
《Journal of dairy science》2021,104(9):9827-9841
This study investigated the effects of an amylase-enabled corn silage on lactational performance, enteric CH4 emission, and rumen fermentation of lactating dairy cows. Following a 2-wk covariate period, 48 Holstein cows were blocked based on parity, days in milk, milk yield (MY), and CH4 emission. Cows were randomly assigned to 1 of 2 treatments in an 8-wk randomized complete block design experiment: (1) control corn silage (CON) from an isogenic corn without α-amylase trait and (2) Enogen hybrid corn (Syngenta Seeds LLC) harvested as silage (ECS) containing a bacterial transgene expressing α-amylase (i.e., amylase-enabled) in the endosperm of the grain. The ECS and CON silages were included at 40% of the dietary dry matter (DM) and contained, on average, 43.3 and 41.8% DM and (% DM) 36.7 and 37.5% neutral detergent fiber, and 36.1 and 33.1% starch, respectively. Rumen samples were collected from a subset of 10 cows using the ororuminal sampling technique on wk 3 of the experimental period. Enteric CH4 emission was measured using the GreenFeed system (C-Lock Inc.). Dry matter intake (DMI) was similar between treatments. Compared with CON, MY (38.8 vs. 40.8 kg/d), feed efficiency (1.47 vs. 1.55 kg of MY/kg of DMI), and milk true protein (1.20 vs. 1.25 kg/d) and lactose yields (1.89 vs. 2.00 kg/d) were increased, whereas milk urea nitrogen (14.0 vs. 12.7 mg/dL) was decreased, with the ECS diet. No effect of treatment on energy-corrected MY (ECM) was observed, but a trend was detected for increased ECM feed efficiency (1.45 vs. 1.50 kg of ECM/kg of DMI) for cows fed ECS compared with CON-fed cows. Daily CH4 emission was not affected by treatment, but emission intensity was decreased with the ECS diet (11.1 vs. 10.3 g/kg of milk, CON and ECS, respectively); CH4 emission intensity on ECM basis was not different between treatments. Rumen fermentation, apart from a reduced molar proportion of butyrate in ECS-fed cows, was not affected by treatment. Apparent total-tract digestibility of nutrients and urinary and fecal nitrogen excretions, apart from a trend for increased DM digestibility by ECS-fed cows, were not affected by treatment. Overall, ECS inclusion at 40% of dietary DM increased milk, milk protein, and lactose yields and feed efficiency, and tended to increase ECM feed efficiency but had no effect on ECM yield in dairy cows. The increased MY with ECS led to a decrease in enteric CH4 emission intensity, compared with the control silage.  相似文献   

18.
Twenty Holstein cows were used in an 8-wk randomized block design study to determine the effects of replacing corn silage with ryegrass silage on nutrient intake, apparent digestion, milk yield, and milk composition. The 8-wk trial consisted of a 2-wk preliminary period followed by a 6-wk collection period. Experimental diets were formulated to provide 55.5% of the total dry matter (DM) as forage. Ryegrass silage was substituted for 0, 35, 65, and 100% of DM provided by corn silage. Dietary concentrations of neutral detergent fiber (NDF) and acid detergent fiber (ADF) increased as ryegrass silage replaced corn silage. Intake of DM and crude protein (CP) was similar for all treatments, but intake of NDF and ADF increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of DM declined linearly, whereas digestibility of CP increased linearly as ryegrass silage replaced corn silage. Apparent digestibility of NDF and ADF was highest for the diets in which ryegrass or corn silages provided all of the forage, resulting in a quadratic response. Dry matter intake was not different among treatments. Yield of milk, fat, and protein increased as ryegrass silage replaced corn silage. No differences were observed for body weight change, body condition score, and serum urea nitrogen concentration, but serum glucose concentration increased with increasing dietary proportion of ryegrass silage. These results indicate that substituting ryegrass silage for a portion or all of the corn silage in diets fed to lactating dairy cows can improve yield of milk and components.  相似文献   

19.
Interactions of endosperm type of corn grain and the brown midrib 3 mutation (bm3) in corn silage on feeding behavior, productivity, energy balance, and plasma metabolites of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous), and corn silage type (bm3 or isogenic control). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Floury endosperm grain decreased dry matter intake (DMI) 1.9 kg/ d compared with vitreous grain when combined with control corn silage but did not affect DMI when combined with bm3 corn silage. This interaction of treatments occurred because of changes in meal size; floury endosperm grain decreased meal size in control silage diets but increased meal size in bm3 corn silage diets. Ruminal pool sizes reflected DMI differences among diets, suggesting that ruminal fill was not the primary limitation on intake. Brown midrib 3 corn silage reduced rumination time per day and number of rumination bouts per day. Floury endosperm grain decreased 3.5% fat-corrected milk by 1.2 kg/d when combined with control silage but increased 3.5% fat-corrected milk by 2.1 kg/d when combined with bm3 corn silage. Starch and fiber digestibility interact to affect feeding behavior and milk production and production response to bm3 corn silage depends on the grain source that is fed.  相似文献   

20.
Interactions of endosperm type of corn grain and the brown midrib 3 (bm3) mutation in corn silage on ruminal kinetics and site of nutrient digestion of lactating dairy cows were evaluated. Eight ruminally and duodenally cannulated cows (72 +/- 8 d in milk; mean +/- SD) were used in a duplicated 4 x 4 Latin square design experiment with a 2 x 2 factorial arrangement of treatments. Treatments were corn grain endosperm type (floury or vitreous) and corn silage type (bm3 or isogenic normal). Diets contained 26% neutral detergent fiber (NDF) and 30% starch. Interactions of treatments were not observed for any measure of digestibility, but digestion kinetics of starch and fiber did interact to affect digestible organic matter intake by affecting dry matter intake. Rate of ruminal starch digestion was faster and rate of ruminal starch passage tended to be slower in diets containing corn grain with floury vs. vitreous endosperm, resulting in a mean increase of 22 units for ruminal starch digestibility. Although compensatory postruminal starch digestion decreased differences among treatments for total tract starch digestibility, starch entering the duodenum was more digestible for grain with floury endosperm compared with vitreous grain, resulting in greater total tract starch digestibility for floury compared with vitreous corn grain. Fermentation rate of potentially digestible NDF was not affected by either bm3 corn silage or greater ruminal starch digestion of floury grain. Brown midrib corn silage increased total tract NDF digestibility vs. control silage by numerically increasing ruminal and postruminal digestibility of NDF. Endosperm type of corn grain greatly influences site of starch digestion and should be considered when formulating diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号