首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a fully anisotropic symmetric weak formulation of Biot's equations for vibro‐acoustic modelling of porous elastic materials in the frequency domain is proposed. Starting from Biot's equations in their anisotropic form, a mixed displacement–pressure formulation is discussed in terms of Cartesian tensors. The anisotropic equation parameters appearing in the differential equations are derived from material parameters which are possible to determine through experimental testing or micro‐structural simulations of the fluid and the porous skeleton. Solutions are obtained by applying the finite element method to the proposed weak form and the results are verified against a weak displacement‐based formulation for a foam and plate combination. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A weak solution of the coupled, acoustic-elastic, wave propagation problem for a flexible porous material is proposed for a 3-D continuum. Symmetry in the matrix equations; with respect to both volume, i.e. ‘porous frame’–‘pore fluid’, and surface, i.e. ‘porous frame/pore fluid’–‘non-porous media’, fluid–structure interaction; is ensured with only five unknowns per node; fluid pore pressure, fluid-displacement potential and three Cartesian components of the porous frame displacement field. Taking Biot's general theory as starting point, the discretized form of the equations is derived from a weighted residual statement, using a standard Galerkin approximation and iso-parametric interpolation of the dependent variables. The coupling integrals appearing along the boundary of the porous medium are derived for a number of different surface conditions. The primary application of the proposed symmetric 3-D finite element formulation is modelling of noise transmission in typical transportation vehicles, such as aircraft, cars, etc., where porous materials are used for both temperature and noise insulation purposes. As an example of an application of the implemented finite elements, the noise transmission through a double panel with porous filling and different boundary conditions at the two panel boundaries are analysed. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
A weak form of the anisotropic Biot's equation represented in a cylindrical coordinate system using a spatial Fourier expansion in the circumferential direction is presented. The original three dimensional Cartesian anisotropic weak formulation is rewritten in an arbitrary orthogonal curvilinear basis. Introducing a cylindrical coordinate system and expanding the circumferential wave propagation in terms of orthogonal harmonic functions, the original, geometrically rotationally symmetric three dimensional boundary value problem, is decomposed into independent two‐dimensional problems, one for each harmonic function. Using a minimum number of dependent variables, pore pressure and frame displacement, a computationally efficient procedure for vibro‐acoustic finite element modelling of rotationally symmetric three‐dimensional multilayered structures including anisotropic porous elastic materials is thus obtained. By numerical simulations, this method is compared with, and the correctness is verified against, a full three‐dimensional Cartesian coordinate system finite element model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A weak symmetric form of Biot's equation in cylindrical coordinates with a spatial Fourier expansion in the circumferential direction is presented. The solid phase displacement and the pore pressure are used as the dependent variables. The original three‐dimensional boundary value problem is here, due to the orthogonality of the harmonic functions and the rotationally symmetric geometry, decomposed into independent two‐dimensional problems, one for each harmonic function. This formulation provides a computationally efficient procedure for vibroacoustic finite element modelling of rotationally symmetric three‐dimensional multilayered structures including porous elastic materials. By numerical simulations, this method is compared with, and verified against, full three‐dimensional Cartesian coordinate system finite element models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This work concerns the variational formulation and the numerical computation of internal acoustic problems with absorbing walls. The originality of the proposed approach, compared to other existing methods, is the introduction of the normal fluid displacement field on the damped walls. This additional variable allows to transpose formulations in frequency domain to time domain when the fluid is described by a scalar field (pressure or fluid displacement potential). With this new scalar unknown, various absorbing wall models can be introduced in the variational formulation. Moreover, the associated finite element matrix system in symmetric form can be solved in frequency and time domain. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A finite element formulation for flow of fluid in a porous elastic media has been derived from a Gurtin type variational principle. Biot's field equations for porous media have been used in which the constitutive relations include the compressibility of the fluid. It has been shown that by proper choice of the form of the compressibility of the fluid as a function of the state variables, this option of the formulation can be used to treat the partially saturated soil. The method is general with respect to geometry, boundary conditions and material properties. Finally, the results of a series of examples have been presented and compared with exact results to demonstrate accuracy and applicability.  相似文献   

7.
A hybrid finite element method has been developed for application to the linear biphasic model of soft tissues. The biphasic model assumes that hydrated soft tissue is a mixture of two incompressible, immiscible phases, one solid and one fluid, and employs mixture theory to derive governing equations for its mechanical behaviour. These equations are time dependent, involving both fluid and solid velocities and solid displacement, and will be solved by spatial finite element and temporal finite difference approximation. The first step in the derivation of this hybrid method is application of a finite difference rule to the solid phase, thus obtaining equations with only velocities at discrete times as primary variables. A weighted residual statement of the temporally discretized governing equations, employing C° continuous interpolations of the solid and fluid phase velocities and discontinuous interpolations of the pore pressure and elastic stress, is then derived. The stress and pressure functions are chosen so that the total momentum equation of the mixture is satisfied; they are jointly referred to as an equilibrated stress and pressure field. The corresponding weighting functions are chosen to satisfy a relationship analogous to this equilibrium relation. The resulting matrix equations are symmetric. As an illustration of the hybrid biphasic formulation, six-noded triangular elements with complete linear, several incomplete quadratic, and complete quadratic stress and pressure fields in element local co-ordinates are developed for two dimensional analysis and tested against analytical solutions and a mixed-penalty finite element formulation of the same equations. The hybrid method is found to be robust and produce excellent results; preferred elements are identified on the basis of these results.  相似文献   

8.
In finite element formulations for poroelastic continua a representation of Biot's theory using the unknowns solid displacement and pore pressure is preferred. Such a formulation is possible either for quasi‐static problems or for dynamic problems if the inertia effects of the fluid are neglected. Contrary to these formulations a boundary element method (BEM) for the general case of Biot's theory in time domain has been published (Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach. Lecture Notes in Applied Mechanics. Springer: Berlin, Heidelberg, New York, 2001.). If the advantages of both methods are required it is common practice to couple both methods. However, for such a coupled FE/BE procedure a BEM for the simplified dynamic Biot theory as used in FEM must be developed. Therefore, here, the fundamental solutions as well as a BE time stepping procedure is presented for the simplified dynamic theory where the inertia effects of the fluid are neglected. Further, a semi‐analytical one‐dimensional solution is presented to check the proposed BE formulation. Finally, wave propagation problems are studied using either the complete Biot theory as well as the simplified theory. These examples show that no significant differences occur for the selected material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
We present a finite element formulation based on a weak form of the boundary value problem for fully coupled thermoelasticity. The thermoelastic damping is calculated from the irreversible flow of entropy due to the thermal fluxes that have originated from the volumetric strain variations. Within our weak formulation we define a dissipation function that can be integrated over an oscillation period to evaluate the thermoelastic damping. We show the physical meaning of this dissipation function in the framework of the well‐known Biot's variational principle of thermoelasticity. The coupled finite element equations are derived by considering harmonic small variations of displacement and temperature with respect to the thermodynamic equilibrium state. In the finite element formulation two elements are considered: the first is a new 8‐node thermoelastic element based on the Reissner–Mindlin plate theory, which can be used for modeling thin or moderately thick structures, while the second is a standard three‐dimensional 20‐node iso‐parametric thermoelastic element, which is suitable to model massive structures. For the 8‐node element the dissipation along the plate thickness has been taken into account by introducing a through‐the‐thickness dependence of the temperature shape function. With this assumption the unknowns and the computational effort are minimized. Comparisons with analytical results for thin beams are shown to illustrate the performances of those coupled‐field elements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This paper develops the scaled boundary finite element formulation for applications in coupled field problems, in particular, to poroelasticity. The salient feature of this formulation is that it can be applied over arbitrary polygons and/or quadtree decomposition, which is widely employed to traverse between small and large scales. Moreover, the formulation can treat singularities of any order. Within this framework, 2 sets of semianalytical, scaled boundary shape functions are used to interpolate the displacement and the pore fluid pressure. These shape functions are obtained from the solution of vector and scalar Laplacian, respectively, which are then used to discretise the unknown field variables similar to that of the finite element method. The resulting system of equations are similar in form as that obtained using standard procedures such as the finite element method and, hence, solved using the standard procedures. The formulation is validated using several numerical benchmarks to demonstrate its accuracy and convergence properties.  相似文献   

11.
The generation and propagation properties of transient leaky Rayleigh waves are characterized by a two-dimensional finite element model. The displacement vector is used as the primary variable for the solid medium and a potential scalar, which is a replacement for the pressure, is taken as the fundamental variable for the fluid medium. The coupled system of finite element equations are solved in the time domain by direct integration through the central difference scheme. Three configurations are considered: the conversion of a Rayleigh surface wave into a leaky Rayleigh wave, a focused beam probing a fluid/solid interface at the Rayleigh angle, and the interaction of a defocused wave with the interface. The wave velocity in the fluid (water) is lower than the Rayleigh wave velocity in the solid (aluminum). The wave propagation profile in each case is predicted by the model. The finite element model proves to be an effective tool for surface acoustic device design and ultrasonic NDE  相似文献   

12.
A meshless local Petrov–Galerkin (MLPG) method is applied to solve wave propagation problems of three-dimensional poroelastic solids with Biot's theory. The Laplace transform is used to eliminate the time dependence of the field variables for the transient elastodynamic case. A weak formulation with a unit step function transforms the set of governing equations into local integral equations on local subdomains. The meshless approximation based on the radial basis function (RBF) is employed for the implementation. Unknown Laplace-transformed quantities, including displacements of solid frame and pressure in the fluid, are computed from the local boundary integral equations. The time-dependent values are obtained by Durbin's inversion technique. In addition, a one-dimensional poroelasticity analytical solution is derived in this paper and introduced for comparison. Several numerical examples demonstrate the efficiency and accuracy of the proposed method.  相似文献   

13.
Hydrated soft tissues of the human musculoskeletal system can be represented by a continuum theory of mixtures involving intrinsically incompressible solid and incompressible inviscid fluid phases. This paper describes the development of a mixed-penalty formulation for this biphasic system and the application of the formulation to the development of an axisymmetric, six-node, triangular finite element. In this formulation, the continuity equation of the mixture is replaced by a penalty form of this equation which is introduced along with the momentum equation and mechanical boundary condition for each phase into a weighted residual form. The resulting weak form is expressed in terms of the solid phase displacements (and velocities), fluid phase velocities and pressure. After interpolation, the pressure unknowns can be eliminated at the element level, and a first order coupled system of equations is obtained for the motion of the solid and fluid phases. The formulation is applied to a six-node isoparametric element with a linear pressure field. The element performance is compared with that of the direct penalty form of the six-node biphasic element in which the pressure is eliminated in the governing equations prior to construction of the weak form, and selective reduced integration is used on the penalty term. The mixed-penalty formulation is found to be superior in terms of tendency to lock and sensitivity to mesh distortion. A number of example problems for which analytic solutions exist are used to validate the performance of the element.  相似文献   

14.
In this paper, a numerical model is developed for the fully coupled analysis of deforming porous media containing weak discontinuities which interact with the flow of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media are derived within the framework of the generalized Biot theory. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three-phase formulation. The other variables are incorporated into the model via the experimentally determined functions that specify the relationship between the hydraulic properties of the porous medium, i.e. saturation, permeability and capillary pressure. The spatial discretization by making use of the extended finite element method (XFEM) and the time domain discretization by employing the generalized Newmark scheme yield the final system of fully coupled non-linear equations, which is solved using an iterative solution procedure. Numerical convergence analysis is carried out to study the approximation error and convergence rate of several enrichment strategies for bimaterial multiphase problems exhibiting a weak discontinuity in the displacement field across the material interface. It is confirmed that the problems which arise in the blending elements can have a significant effect on the accuracy and convergence rate of the solution.  相似文献   

15.
The equations that govern the dynamic response of saturated porous media are first discretized in time to define the boundary value problem that supports the formulation of the hybrid‐Trefftz stress element. The (total) stress and pore pressure fields are directly approximated under the condition of locally satisfying the domain conditions of the problem. The solid displacement and the outward normal component of the seepage displacement are approximated independently on the boundary of the element. Unbounded domains are modelled using either unbounded elements that locally satisfy the Sommerfeld condition or absorbing boundary elements that enforce that condition in weak form. As the finite element equations are derived from first‐principles, the associated energy statements are recovered and the sufficient conditions for the existence and uniqueness of the solutions are stated. The performance of the element is illustrated with the time domain response of a biphasic unbounded domain to show the quality of the modelling that can be attained for the stress, pressure, displacement and seepage fields using a high‐order, wavelet‐based time integration procedure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Based on a variational principle due to Gurtin, for linear elastodynamics, a finite element method in terms of stresses is developed for wave propagation problems. The finite element equations are simultaneous integral equations in time, with the peculiarity that they are equivalent to simultaneous linear differential equations with zero initial conditions. Written as differential equations, the finite element equations are of the form where [H] is a symmetric positive-semidefinite matrix, [Q] is a symmetric positive-definite matrix and the stresses are represented by {s?}. This is, of course, the same form as the equations for the displacement formulation. As a demonstration of the validity of the formulation numerical results are compared with a solution for a triangular-shaped strip load applied to an elastic half-space as a ramp function of time. This solution is obtained by numerical integration of the exact solution for Lamb's problem of a line load suddenly applied to a half-space. The agreement is found to be generally very good. As a further example, the case of a plate subject to uniform tension on two ends and containing a hole in the centre is presented. The results are found to be reasonable in that the characteristic stress concentration occurs near the hole, and away from the hole the results are similar to the solution for an infinitely wide plate.  相似文献   

17.
The standard SSOR preconditioner is ineffective for the iterative solution of the symmetric indefinite linear systems arising from finite element discretization of the Biot's consolidation equations. In this paper, a modified block SSOR preconditioner combined with the Eisenstat‐trick implementation is proposed. For actual implementation, a pointwise variant of this modified block SSOR preconditioner is highly recommended to obtain a compromise between simplicity and effectiveness. Numerical experiments show that the proposed modified SSOR preconditioned symmetric QMR solver can achieve faster convergence than several effective preconditioners published in the recent literature in terms of total runtime. Moreover, the proposed modified SSOR preconditioners can be generalized to non‐symmetric Biot's systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper extends the gradient‐inelastic (GI) beam theory, introduced by the authors to simulate material softening phenomena, to further account for geometric nonlinearities and formulates a corresponding force‐based (FB) frame element computational formulation. Geometric nonlinearities are considered via a rigorously derived finite‐strain beam formulation, which is shown to coincide with Reissner's geometrically nonlinear beam formulation. The resulting finite‐strain GI beam theory: (i) accounts for large strains and rotations, unlike the majority of geometrically nonlinear beam formulations used in structural modeling that consider small strains and moderate rotations; (ii) ensures spatial continuity and boundedness of the finite section strain field during material softening via the gradient nonlocality relations, eliminating strain singularities in beams with softening materials; and (iii) decouples the gradient nonlocality relations from the constitutive relations, allowing use of any material model. On the basis of the proposed finite‐strain GI beam theory, an exact FB frame element formulation is derived, which is particularly novel in that it: (a) expresses the compatibility relations in terms of total strains/displacements, as opposed to strain/displacement rates that introduce accumulated computational error during their numerical time integration, and (b) directly integrates the strain‐displacement equations via a composite two‐point integration method derived from a cubic Hermite interpolating polynomial to calculate the displacement field over the element length and, thus, address the coupling between equilibrium and strain‐displacement equations. This approach achieves high accuracy and mesh convergence rate and avoids polynomial interpolations of individual section fields, which often lead to instabilities with mesh refinements. The FB formulation is then integrated into a corotational framework and is used to study the response of structures, simultaneously accounting for geometric nonlinearities and material softening. The FB formulation is further extended to capture member buckling triggered by minor perturbations/imperfections of the initial member geometry.  相似文献   

19.
A scheme for treating unsymmetrical coupled systems is outlined. Such systems occur naturally in connection with fluid–structure interaction, where an acoustic fluid is contained in an elastic structure. The discretization is performed by means of the finite element method, using displacement formulation in the structure and either pressure or displacement potential in the fluid. Based on the eigenvalues of each subdomain some simple steps give a standard eigenvalue problem. It might also be concluded that the unsymmetrical matrices have real eigenvalues.  相似文献   

20.
A modified version of an exact Non‐reflecting Boundary Condition (NRBC) first derived by Grote and Keller is implemented in a finite element formulation for the scalar wave equation. The NRBC annihilate the first N wave harmonics on a spherical truncation boundary, and may be viewed as an extension of the second‐order local boundary condition derived by Bayliss and Turkel. Two alternative finite element formulations are given. In the first, the boundary operator is implemented directly as a ‘natural’ boundary condition in the weak form of the initial–boundary value problem. In the second, the operator is implemented indirectly by introducing auxiliary variables on the truncation boundary. Several versions of implicit and explicit time‐integration schemes are presented for solution of the finite element semidiscrete equations concurrently with the first‐order differential equations associated with the NRBC and an auxiliary variable. Numerical studies are performed to assess the accuracy and convergence properties of the NRBC when implemented in the finite element method. The results demonstrate that the finite element formulation of the (modified) NRBC is remarkably robust, and highly accurate. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号