首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper is concerned with consensus problems in directed networks of multiple agents with double‐integrator dynamics. It is assumed that each agent adjusts its state based on the information of its states relative to its neighbors at discrete times and the interaction topology among agents is time‐varying. Both synchronous and asynchronous cases are considered. The synchrony means that each agent's update times, at which it obtains new control signals, are the same as the others', and the asynchrony implies that each agent's update times are independent of the others'. In the synchronous case, the consensus problem is proved to be equivalent to the asymptotic stability problem of a discrete‐time switched system. By analyzing the asymptotic stability of the discrete‐time switched system, it is shown that consensus can be reached if the update time intervals are small sufficiently, and an allowable upper bound of update time intervals is obtained. In the asynchronous case, the consensus problem is transformed into the global asymptotic stability problem of a continuous‐time switched system with time‐varying delays. In virtue of a linear matrix inequality method, it is proved that consensus can be reached if the delays are small enough, and an admissible upper bound of delays is derived. Simulations are provided to illustrate the effectiveness of the theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
    
This paper studies consensus in linear multi‐agent systems with current and sampled partial relative states. A distributed linear consensus protocol is designed, where both current and sampled relative states are utilized. A necessary and sufficient condition for consensus in this setting is established. The notion of the consensus region is then introduced and analyzed for third‐order systems, provided that each agent can only know its relative positions and velocities. It is shown that the consensus regions are stable to control gains and sampling period. Additionally, how to choose the control gains and the sampling period is given for consensus in third‐order systems. Finally, an example is given to verify and illustrate the analysis.  相似文献   

3.
    
In this paper, we consider the consensus problem for heterogeneous multi‐agent systems composed of some first‐order and some second‐order dynamic agents in directed communication graphs. Consensus protocols are proposed for the second‐ and first‐order dynamic agents, respectively. Under certain assumptions on the control parameters, for fixed communication topologies, necessary and sufficient conditions for consensus are given, and the consensus values of all agents are established. For switching topologies, sufficient conditions are given for all agents to reach consensus. Finally, simulation examples are presented to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
    
In this paper, the consensus control problems for multi‐agent systems under double integrator dynamics with time‐varying communication delays are investigated. We assume that the interaction graphs among agents are directed. Two kinds of protocols are considered. One is an absolute damping protocol, and the other is a relative damping protocol. For the first protocol, Lyapunov–Razumikhin functional techniques are used. We derive sufficient conditions that guarantee that all agents asymptotically reach consensus under fixed topology and switching topology, respectively. Moreover, the allowable upper bound for communication delays is given. For the second protocol, Lyapunov–Krasovskii functional techniques are used. Linear matrix inequality (LMI)‐form sufficient conditions are obtained to guarantee the consensus problems to be solved under fixed topology and switching topology, respectively. The allowable upper bound for communication delays is given as well. The feasibilities of the demanded LMIs are also discussed. Finally, numerical simulations are provided to illustrate the effectiveness of our theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
    
This paper addresses the distributed observer‐based consensus problem of second‐order multi‐agent systems via sampled data. Firstly, for the case of fixed topology, a velocity‐independent distributed control law is proposed by designing a distributed observer to estimate the unavailable velocity, then a sufficient and necessary condition of consensus on design parameters and sampling period is obtained by using the matrix analysis method. Secondly, for the case of stochastically switching topology, a sufficient and necessary condition of mean square consensus is also proposed and proven, and an algorithm is provided to design the parameters in the consensus protocol. Two simulation examples are given to illustrate the effectiveness of the proposed consensus algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
    
This paper performs a consensus analysis of leader‐following multi‐agent systems with multiple double integrators in the framework of sampled‐data control. Both single‐leader and multiple‐leader scenarios are considered under the assumption of networks with detectable position‐like state information. The coordination tasks are accomplished by a given protocol with the robustness against the change of sampling periods. The sampling periods can be chosen to be of an arbitrary fixed length or large time‐varying length. Under the proposed protocol, we achieve two objectives: (i) in the single leader‐subgroup case, all followers reach an agreement with leaders on states asymptotically and (ii) in the multiple leader‐subgroup case, each follower converges to some convex combination of the final states of all leaders. It is shown that the final state configuration of the convex combination is uniquely determined by the underlying interaction topology, which can be any weakly connected graph. Compared with the existing results on leader‐following networks, the consensus problem and the containment problem are solved in a unified framework with large sampling periods. Some numerical experiments are conducted to illustrate the dynamic behavior of all agents with this protocol. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
    
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
    
This paper is concerned with the fixed‐time coordinated tracking problem for a class of nonlinear multi‐agent systems under detail‐balanced directed communication graphs. Different from conventional finite‐time coordinated tracking strategies, the fixed‐time approach developed in this paper guarantees that a settling time bound is prescribed without dependence on initial states of agents. First, for the case of a single leader, a distributed protocol based on fixed‐time stability techniques is proposed for each follower to accomplish the consensus tracking in a fixed time. Second, in the presence of multiple leaders, a new distributed protocol is proposed such that states of followers converge to the dynamic convex hull spanned by those of leaders in a fixed time. In addition, for a class of linear multi‐agent systems, sufficient conditions that guarantee the fixed‐time coordinated tracking are provided. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

9.
    
This paper addresses the synchronization problems with/without a dynamic leader for a team of distributed Lagrange systems on digraph. A systematic way to design and analyze the distributed control algorithms is presented. The contributions of the paper are twofold. First, the adaptive coordination control protocols are proposed for synchronization of networked uncertain Lagrange systems with/without tracking. This protocol can guarantee synchronization in finite time. Second, the design of the distributed tracking controller for the networked dynamic systems is proposed by using Lyapunov methods. The development is suitable for the general digraph communication topologies. Simulation examples are included to demonstrate the effectiveness of the proposed algorithms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this paper, the distributed observer‐based stabilization problem of multi‐agent systems under a directed graph is investigated. Distributed observer‐based control protocol with sampled‐data information is proposed. The dynamics of each agent contain a nonlinear part, which is supposed to be general Lipschitz. In order to stabilize the states of the whole network, all the nodes utilize the relative output estimation error at sampling instants and only a small fraction of nodes use the absolute output estimation error additionally. By virtue of the input‐to‐state stability (ISS) property and the Lyapunov stability theory, an algorithm to design the control gain matrix, observer gain matrix, coupling strength as well as the allowable sampling period are derived. The conditions are in the form of LMIs and algebraic inequality, which are simple in form and easy to verify. Some further discussions about the solvability of obtained linear matrix inequalities (LMIs) are also given. Lastly, an example is simulated to further validate the obtained results.  相似文献   

11.
    
In this paper, the stabilization problem of a class of nonlinear networked systems with time‐delay and quantization through sampled‐data control is investigated. With sampled‐data control, sufficient conditions to guarantee the trivial solution of the nonlinear networked system to be asymptotically stable without any quantization or with uniform quantization are derived. Finally, an example of a continuous‐time nonlinear system controlled through a digital controller and a communication channel is given to illustrate the effectiveness of the proposed control methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
    
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
    
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
    
This paper deals with the consensus problem of second‐order multi‐agent systems with sampled data. Because of the unavailable velocity information, consensus problem is studied only by using the sampled position information. The final consensus states of multi‐agent system are given. And a necessary and sufficient consensus condition is provided, which depends on the parameters of sampling interval, eigenvalues of Laplacian matrix, and coupling strengths. Then, the case that both the sampled position and velocity information can be obtained is discussed. On the basis of introducing a time‐varying piecewise‐continuous delay and proposing a novel time‐dependent Lyapunov functional, the sufficient consensus condition is presented, and the upper bound of sampling interval can be estimated. Simulation examples are provided finally to demonstrate the effectiveness of the proposed design methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
    
We are concerned with the consensus problem for a class of uncertain nonlinear multi‐agent systems (MASs) connected through an undirected communication topology via event‐triggered approaches in this paper. Two distributed control strategies, the adaptive centralized event‐triggered control one and adaptive distributed event‐triggered control one, are presented utilizing neural networks (NNs) and event‐driven mechanisms, where the advantages of the proposed control laws lie that they remove the requirement for exact priori knowledge about parameters of individual agents by taking advantage of NNs approximators and they save computing and communication resources since control tasks only execute at certain instants with respect to predefined threshold functions. Also, the trigger coefficient can be regulated adaptively with dependence on state errors to ensure not only the control performance but also the efficiency of the network interactions. It is proven that all signals in the closed‐loop system are bounded and the Zeno behavior is excluded. Finally, simulation examples are presented for illustration of the theoretical claims.  相似文献   

16.
    
This paper addresses the observer‐based consensus tracking problem of multi‐agent systems with intermittent communications. The agent dynamics are modeled as general linear systems with Lipschitz nonlinearity. Under the assumption that each agent can intermittently share its relative output with neighbors, a class of an observer‐type protocol is proposed, and the consensus tracking problem can be converted further into the stability problem of the nonlinear switching systems. Using a combined tool from M matrix theory, switching theory and the averaging approach, a multi‐step algorithm is presented to construct the observer gains and protocol parameters, and the sufficient criteria established not only can ensure the state estimates convergence to the real values but also can guarantee the follower states synchronize to those of the leader. The obtained results reveal the relationships among the communication rate, the convergence rate, and the dwell time of switching topologies. Finally, the theoretical findings are validated by a numerical example.  相似文献   

17.
    
We consider distributed estimation on a directed graph with switching topologies. Motivated by a recent PI consensus filter, we modify the protocol and remove the requirement of bidirectional exchange of neighboring gains for fixed topologies. We then extend the protocol to switching topologies and propose a new hybrid consensus filter design. Convergence results under both balanced directed, and general directed graphs are given for switching graphs. Consensus error bounds are analytically derived in the case of time‐varying inputs. Satisfactory simulation results are shown. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
    
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
    
We use a high‐gain methodology to construct linear decentralized controllers for consensus, in networks with identical but general multi‐input linear time‐invariant (LTI) agents and quite‐general time‐invariant and time‐varying observation topologies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
    
This paper deals with the problem of global leader‐following consensus of a group of discrete‐time general linear systems with bounded controls. For each follower agent in the group, we construct both a bounded state feedback control law and a bounded output feedback control law. The feedback laws for each input of an agent use a multi‐hop relay protocol, in which the agent obtains the information of other agents through multi‐hop paths in the communication network. The number of hops each agent uses to obtain its information about other agents for an input is less than or equal to the sum of the number of real eigenvalues on the unit circle and the number of pairs of complex eigenvalues on the unit circle of the subsystem corresponding to the input, and the feedback gains are constructed from the adjacency matrix of the communication network. We show that these control laws achieve global leader‐following consensus when the communication topology among follower agents forms a strongly connected and detailed balanced directed graph and the leader is a neighbor of at least one follower agent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号