首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solid oxides, such as ceria (CeO2) doped with cations of lower valance, are potential electrolytes for future solid oxide fuel cells. This is due to the theoretically high ionic conductivity at low operation temperature. This paper investigates the feasibility of two potential electrolytes which are samarium-doped ceria (SDC) and gadolinium-doped ceria (GDC) to replace the traditional yttria-stablized zirconia (YSZ). Molecular simulation techniques were employed to study the influence of different dopant concentrations at different operation temperatures on the ionic conductivity from the atomistic perspective. Simulation results show that the optimized ionic conductivity occurs at 11.11mol% concentration using both dopants of Gd2O3 and Sm2O3. The temperature effect was also examined under a fixed concentration simulation to check how low temperature they still function. The predicted ionic conductivities have been verified with published experimental results and show reasonable agreements. This simulation technique reveals a clear picture with qualitative and quantitative connection between the choice of the dopant and the improvement of the ionic conductivity of fuel cell electrolytes.  相似文献   

2.
3.
纳米PbF2的制备、物相组成和离子导电性   总被引:5,自引:0,他引:5  
采用惰性气体蒸发和原位真空压结法制备了具有清洁界面的纳米PbF2块材。通过X射线衍射、差热分析和复平面阻抗谱方法,研究了相结构、相变和离子电导率。结果表明,纳米PbF2比粗晶PbF2的离子电导率大幅提高,相变温度降低了30℃。  相似文献   

4.
5.
聚合物电解质离子电导率的影响因素   总被引:4,自引:1,他引:3  
卢翠红  潘春跃 《材料导报》2003,17(4):58-60,38
聚合物电解质具有质轻、粘弹性好、优良的安全性能和加工性能等许多无机电解质和有机溶剂电解质所不可比拟的优点,在微型移动电源领域有着广泛的应用前景。但由于室温电导率低,应用受到限制。综述了聚合物电解质的离子传导机制以及室温电导率的影响因素。  相似文献   

6.
Microstructural features and ionic conductivity of divalent ( Mg2 + ) and trivalent ( Gd^3+ ) cations co-doped ceria electrolyte system Ce0.8sGd0.2MgxO1. 9-s were investigated by scanning electron microscopy (SEM) and AC impedance analysis. The experimental results exhibit that addition of MgO to GDC reduces the average binding energy of GDC by decreasing the energy barrier of oxygen ion migration in ceria matrix and the ionic conductivity of 2 mol% magnesium doped GDC (0.018 S/cm) is higher than that of GDC matrix at 650℃ (0.0105 S/cm). Co-doping Mg^2+ and Gd^3+ is found to increase the ionic conductivity of ceria and hence decreases the operation temperature as well as the cost of solid oxide fuel cell (SOFC).  相似文献   

7.
Y2O3稳定ZrO2材料的电导活化能   总被引:3,自引:0,他引:3  
在313-473K温度范围内测定了一种Y2O3稳定ZrO2材料(YSZ)的交流电导率谱,进而导出了材料的直流电导率并分析了其随温度的变化关系。研究发现:在低温下材料的电导尖化能随温度的升高而增大。这一实验现象与在高温下所观察到的活化能随温度升高而降低规律截然相反。通过分析材料中氧空位的解缔及迁移机制,对YSZ材料中电导活化能随温度的变化关系作出了一个合理的解释。  相似文献   

8.
纳米PbF2的制备、物相组成和离子导电性   总被引:3,自引:0,他引:3  
采用惰性气体蒸发和原位真空压结法制备了具有清洁界面的纳米PbF2块材.通过X射线衍射、差热分析和复平面阻抗谱方法,研究了相结构、相变和离子电导率.结果表明,纳米PbF2比粗晶PbF2的离子电导率大幅提高,相变温度降低了30℃.  相似文献   

9.
采用固态反应法制备了Sr、Mg掺杂的LaGaO3固体电解质材料,研究了不同Sr、Mg掺杂量对LSGM材料的导电性的影响.结果表明,随Sr、Mg掺杂量的增加,LSGM材料的电导率开始增加,达到最大值后,逐步降低,LSGM1520和LSGM2015具有最高电导率,此时材料由单一的立方相组成;LSGM材料的离子电导率随测试温度的升高而增加,ln(σT)与1/T关系曲线呈现两段不同斜率的直线,交点温度为T^*,当测试温度低于T^*时,氧离子迁移激活能大于温度高于T^*的激活能.  相似文献   

10.
11.
La0.6Sr0.4Co1-yFeyO3的混合导电性研究   总被引:1,自引:0,他引:1  
采用直流四探针法和两端子电子阻塞电极交流阻抗谱研究了GNP法制备La0.6Sr0.4Co1-yFeyO3陶瓷的电子-离子混合导电性能.在室温-900℃范围内,La0.6Sr0.4CoO3的电子电导率随温度的升高而单调降低,其它样品的电子电导率随温度的升高在600℃附近达到最大值.La0.6Sr0.4Co1-yFeyO3陶瓷的氧离子电导率随温度的升高而增加.在相同温度下,随着Co/Fe比例的增加,La0.6Sr0.4Co1-yFeyO3陶瓷的电子电导率和氧离子电导率增加,电子导电活化能和离子导电活化能降低.氧离子迁移数随温度的升高而增加,随Co/Fe比例的增加而降低.  相似文献   

12.
Ceria-based electrolytes have been widely researched in intermediate-temperature solid oxide fuel cell (SOFC), which might be operated at 500-600?C. Sintering behavior with lithium oxide as sintering additive and electrical conductivity of gadolinia doped ceria (Gd0.1Ce0.9O2δ, GDC10) electrolyte was studied in this paper by X-ray di?raction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). As the results, the fully dense GDC10 electrolytes are obtained at a low temperature of 800?C with 2.5 mol% Li2O as sintering additive (called 5LiGDC800). During sintering process, lithium oxides adsorbed by around GDC10 surface help to sinter at 800?C and are kept at the grain boundary of GDC10 in the end. The fine grains of 100-400 nm and high electrical conductivity of 0.014 S/cm at 6000C in 5LiGDC800 were achieved, which contributed to the lower sintering temperature and enhanced grain boundary conductivity, respectively. Lithium, staying at grain boundary, reduces the depletion of oxygen vacancies in the space charge layers and increases the oxygen vacancy concentration in the grain boundary, which leads to improve the total electrical conductivity of 5LiGDC800.  相似文献   

13.
14.
15.
16.
17.
18.
In this study, the ionic conductivity behavior in hybrid gelatin-based transparent electrolytes including various types of nanoclays with different size, shape and surface properties was characterized. The effects of nanoclay type and nanoclay concentration as well as different experimental conditions, e.g., pH, temperature and crosslinking were also investigated. In general, the impedance spectroscopy results suggested a non- trivial role for nanoclay. Regardless of the nanoclay type, the ionic conductivity slightly increased first and then decreased by increasing the nanoclay concentration. Furthermore, among sodium montmorillonite (Na+MMT), lithium montmorillonite (Li+MMT), laponite and hydrotalcite, the hybrid electrolytes prepared by Li+MMT showed higher ionic conductivity. The results also showed that the chemical crosslinking along with sample preparation at optimum pH, where the gelatin chains might be efficiently adsorbed on exfoliated, negatively charged clay nanosheets, plays an important role. In comparison with the ionic conductivity of the neat sample at room temperature (~10-7 S cm-1), a ten-fold increase was observed for the crosslinked sample containing 2 wt% of Li^+MMT prepared at optimum pH 3.5. The conductivity behavior as a function of temperature revealed the obedience with the VogeI-Fulcher-Tammann (VFT) model for all samples, suggesting the important role of segmental motions in the ionic conductivity. Finally, a qualitative explanation was presented for the mechanism of the ionic conduction in gelatin-nanoclay hybrid electrolytes.  相似文献   

19.
20.
Currently there is great interest in using organic semiconductors to develop novel flexible electronic applications. An emerging strategy in organic semiconductor materials research involves development of composite or layered materials in which electronic and ionic conductivity is combined to create enhanced functionality in devices. For example, we and other groups have employed ionic motion to modulate electronic transport in organic field‐effect transistors using solid electrolytes. Not only do these transistors operate at low voltages as a result of greatly enhanced capacitive coupling, but they also display intriguing transport phenomena such as negative differential transconductance. Here, we discuss differences in operation between traditional (e.g., SiO2) and electrolyte‐based dielectrics, suggest further improvements to currently used electrolyte materials, and propose several possibilities for exploiting electrolytes in future applications with both organic and inorganic semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号