首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an adaptive regulation approach in linear systems against exogenous narrow band inputs such as disturbances or reference signals consisting of a linear combination of biased sinusoids with unknown amplitudes, frequencies, and phases. The design of the regulator is based on considering a Q‐parameterized set of stabilizing controllers for the linear system, where an adaptive FIR filter with fixed IIR filtering is adopted as the Q parameter. The goal of the adaptation is to search within the set of stabilizing controllers for a controller, or equivalently a Q parameter, that yields regulation in the closed loop system. The proposed adaptive regulation algorithm is applied to an active suspension beam system, which is motivated by the flying height control problem in data storage systems. The experimental result of the closed loop system shows the effectiveness of the proposed adaptive regulator in achieving the desired tracking performance under unknown exogenous disturbances.  相似文献   

2.
This paper considers the regulation problem for bimodal systems against known disturbance and reference signals. Switching between the two plant models as well as between the disturbance and reference signals is defined according to a switching surface. The design of the proposed regulators involves three main steps. First, a set of observer‐based Q‐parameterized stabilizing controllers for the switched system is constructed. The stability and the input/output properties for the resulting closed‐loop switched system with the Q‐parameterized controllers are analysed. Second, regulation conditions for each of the two subsystems in the resulting bimodal switched closed‐loop system are presented. In the third step, regulation conditions for the switched closed‐loop system are developed using two approaches. In the first approach, sufficient regulation conditions are derived based on the closed‐loop system's input–output properties. In the second approach, the forced switched closed‐loop system is transformed into an unforced impulsive switched system using an appropriate coordinate transformation. Hence, the regulation problem for the switched closed‐loop system is transformed into a stability analysis problem for the origin of an impulsive switched system. A regulator synthesis method based on solving some linear matrix inequalities is proposed. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a novel framework to asymptotically adaptively stabilize a class of switched nonlinear systems with constant linearly parameterized uncertainty. By exploiting the generalized multiple Lyapunov functions method and the recently developed immersion and invariance (I&I) technique, which does not invoke certainty equivalence, we design the error estimator, continuous state feedback controllers for subsystems, and a switching law to ensure boundedness of all closed‐loop signals and global asymptotical regulation of the states, where the solvability of the I&I adaptive stabilization problem for individual subsystems is not required. Then, along with the backstepping method, the proposed design technique is further applied to a class of switched nonlinear systems in strict‐feedback form with an unknown constant parameter so that the I&I adaptive stabilization controllers for the system is developed. Finally, simulation results are also provided to demonstrate the effectiveness of the proposed design method.  相似文献   

4.
Attenuation of sinusoidal disturbances with uncertain and arbitrarily time‐varying frequencies is considered in the form of a generalized asymptotic regulation problem. The disturbances are modeled as the outputs of a parameter‐dependent, unexcited and neutrally stable exogenous system that evolves from nonzero initial conditions. The problem is considered for a plant that depends partially on the uncertain parameters. Moreover, both the plant and the exogenous system are allowed to have dependence on another parameter vector that is measurable during online operation. The problem is then formulated as the synthesis of a controller that is scheduled on the measurable parameter in a way to guarantee robust internal stability and attenuate the disturbance according to a desired profile in steady state. The main result of the paper is a synthesis procedure based on a convex optimization problem, which is identified by a set of parameter‐dependent linear matrix inequalities and can be rendered tractable through standard relaxation schemes. It is also clarified how the transient behavior of the controller can be improved by some additional constraints. The order of the synthesized controller is equal to the order of the plant plus the order of the exogenous system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
We consider the problem of controlling cascade systems consisting of two linear dynamic blocks and two saturation elements arranged according to the N‐L‐N‐L series configuration. A cascade controller is considered and its performances are formally analyzed using input–output stability tools. In addition to global boundedness of all signals of the closed‐loop system, the controller is formally shown to enjoy a l2 ‐tracking performance in presence of arbitrary‐shape inputs (i.e. reference signal, disturbance).  相似文献   

6.
A masterslave synchronisation control problem is addressed for current-fed DC and permanent magnet synchronous motors with all uncertain parameters. A measurable exogenous rotor position reference signal, which belongs to the class of biased sinusoidal signals with uncertain bias, amplitude, angular frequency, phase, is to be tracked without assuming its a priori knowledge. An innovative modification of disturbance cancellation techniques allows to prove that an output feedback adaptive nonlinear control scheme, which simply generalises the classical internal-model-based input law, solves the aforementioned problem, with an overall stability proof concerning the entire closed-loop system. The practical effectiveness of the proposed approach is illustrated by experimental results.  相似文献   

7.
This paper studies the issues of adaptive passification and global stabilization for a class of switched nonlinearly parameterized systems. Each subsystem is allowed to be non‐feedback passive. Firstly, a passivity concept for switched nonlinear systems is proposed. In particular, the change of storage functions of an inactive subsystem is described. An adaptively feedback passive switched nonlinear system is shown to be stabilized under the partly asymptotic zero‐state detectability assumption. Secondly, the adaptive feedback controller for each subsystem and a state‐dependent switching law are designed to render the resulting closed‐loop system passive. Finally, a new switched adaptive control technique is developed to solve the adaptive stabilization problem by exploiting the recursive feedback passification design technique and parameter separation technique when all subsystems have any same relative degree. The simulation results on adaptive stabilization of continuously stirred tank reactor system show effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an approach to simultaneously estimating the states and inputs of discrete‐time linear switched singular state‐delayed systems with unknown inputs, multiple missing measurements, and average dwell time (ADT) switching. In each output measurement channel of the system, the data loss incident is controlled by an individual stochastic variable obeying a certain probability distribution on the interval [01]. The proposed approach is based on the design of a switched, loss‐probability‐dependent proportional integral observer under the ? 2 input attenuation framework. By using piecewise Lyapunov function technique, ADT scheme, stochastic analysis, and projection lemma, sufficient conditions for the existence of such an observer are established in terms of linear matrix inequalities, which guarantee that the resulting estimation error system is stochastically exponentially admissible and achieves an (non‐weighted) ? 2 gain from the augmented unknown input to the state and unknown input estimation errors under ADT switching. Moreover, a method is provided to seek the minimum allowable ? 2 gain level for a desired ADT of the switching signals. The effectiveness of the proposed approach is illustrated by a simulation example of direct current (DC) servomechanism control system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, a bipartite consensus problem is considered for a high‐order multiagent system with cooperative‐competitive interactions and unknown time‐varying disturbances. A signed graph is used to describe the interaction network associated with the multiagent system. The unknown disturbances are expressed by linearly parameterized models, and distributed adaptive laws are designed to estimate the unknown parameters in the models. For the case that there is no exogenous reference system, a fully distributed adaptive control law is proposed to ensure that all the agents reach a bipartite consensus. For the other case that there exists an exogenous reference system, another fully distributed adaptive control law is also developed to ensure that all the agents achieve bipartite consensus on the state of the exogenous system. The stability of the closed‐loop multiagent systems with the 2 proposed adaptive control laws are analyzed under an assumption that the interaction network is structurally balanced. Moreover, the convergence of the parameter estimation errors is guaranteed with a persistent excitation condition. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed adaptive bipartite consensus control laws for the concerned multiagent system.  相似文献   

10.
This paper investigates the H state tracking model reference adaptive control (MRAC) problem for a class of switched systems using an average dwell-time method. First, a stability criterion is established for a switched reference model. Then, an adaptive controller is designed and the state tracking control problem is converted into the stability analysis. The global practical stability of the error switched system can be guaranteed under a class of switching signals characterised by an average dwell time. Consequently, sufficient conditions for the solvability of the H state tracking MRAC problem are derived. An example of highly manoeuvrable aircraft technology vehicle is given to demonstrate the feasibility and effectiveness of the proposed design method.  相似文献   

11.
A novel type of control scheme combined the distance‐observer‐based control (DOBC) with H control is proposed for a class of nonlinear time‐delay systems subject to disturbances. The disturbances are supposed to include two parts. One in the input channel is generated by an exogenous system with uncertainty, which can represent the harmonic signals with modeling perturbations. The other is supposed to have the bounded H2 norm. The disturbance observers based on regional pole placement and D‐stability theory are presented, which can be designed separately from the controller design. By integrating disturbance‐observer‐based control with H control laws, the disturbances can be rejected and attenuated, simultaneously, the desired dynamic performances can be guaranteed for nonlinear time‐delay systems with unknown nonlinear dynamics. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
Research in adaptive control algorithms for safety-critical applications is primarily motivated by the fact that these algorithms have the capability to suppress the effects of adverse conditions resulting from exogenous disturbances, imperfect dynamical system modelling, degraded modes of operation, and changes in system dynamics. Although government and industry agree on the potential of these algorithms in providing safety and reducing vehicle development costs, a major issue is the inability to achieve a-priori, user-defined performance guarantees with adaptive control algorithms. In this paper, a new model reference adaptive control architecture for uncertain dynamical systems is presented to address disturbance rejection and uncertainty suppression. The proposed framework is predicated on a set-theoretic adaptive controller construction using generalised restricted potential functions.The key feature of this framework allows the system error bound between the state of an uncertain dynamical system and the state of a reference model, which captures a desired closed-loop system performance, to be less than a-priori, user-defined worst-case performance bound, and hence, it has the capability to enforce strict performance guarantees. Examples are provided to demonstrate the efficacy of the proposed set-theoretic model reference adaptive control architecture.  相似文献   

13.
This work addresses the problem of disturbance estimation and cancelation for ships with ocean disturbances and modeling uncertainties under thruster saturation effects. The ocean disturbances are expressed as the multiple sinusoidal disturbances with unknown frequencies, amplitudes, and phases. By means of a parametric exogenous system and a canonical model with unknown disturbances being inputs, the ocean disturbances are represented as the multivariate regression model with unavailable regressors and regression parameters. An observer is employed to provide the regressor estimation, such that the disturbance estimation and cancelation are converted to the adaptive control problem. The robust control term with the adaptive technique attenuates the modeling uncertainties. The thruster saturation effects are reduced using the state vectors from the auxiliary dynamic filter to online correct the control errors. The ship disturbance cancelation controller is derived via the adaptive backstepping. The closed‐loop tracking system is guaranteed to be uniformly ultimately stable and the ship's position and heading navigate along with desired trajectories. The proposed adaptive control scheme is validated by simulations with comparisons on a 1:70 scaled model ship CyberShip II in different cases.  相似文献   

14.
This paper addresses the state‐tracking model reference adaptive control problem for a class of switched systems with parametric uncertainties, where switchings between subsystems and designed adaptive controller are asynchronous. First, we establish a stability criterion for a switched reference model and convert the state‐tracking problem into the stability problem of an error switched system. Then, an adaptive law is designed, and the global practical stability of the error switched system is guaranteed under a class of switching signals characterized by a dwell‐time condition. An electrohydraulic system is given as an example to demonstrate the feasibility and effectiveness of the proposed design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the multiple model adaptive control scheme is first introduced into a class of switched systems. A switched multiple model adaptive control scheme is proposed to improve the transient behavior by resetting the controller parameters. Firstly, a finite‐time parameter identification model is presented, which greatly reduces the number of identification models. Secondly, a two‐layer switching strategy is constructed. The outer layer switching mechanism is to ensure the stability of the switched systems. The inner layer switching mechanism is to improve the transient behavior. Then, by using the constructed jumping multiple Lyapunov functions, the proposed adaptive control scheme guarantees that all the closed‐loop system signals remain bounded and the state tracking error converges to a small ball whose radius can be made arbitrarily small by appropriately choosing the design parameter. Finally, a practical example about model reference adaptive control of an electrohydraulic system using multiple models is given to demonstrate the validity of the main results.  相似文献   

16.
The problem of adaptive stabilization is studied for a class of high‐order switched nonlinearly parameterized systems; none of subsystems is assumed to be adaptively stabilizable. By exploiting the multiple Lyapunov functions method and the adding a power integrator technique, a switched adaptive control technique is set up. Meanwhile, in order to reduce the conservativeness caused by adoption of a common update law for all subsystems, different update laws of individual subsystems are designed. Also, we simultaneously construct a switching law and adaptive state‐feedback controllers of subsystems to achieve global stability in the sense of Lyapunov of the closed‐loop system and global asymptotic regulation of the system states. Two examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we proposed a model reference robust adaptive control approach for a class of uncertain switched linear systems, in which subsystems of the switched linear system are in control canonical form. The control architecture is composed of a switched reference system (SRS) and a switched adaptive controller (SAC). The SRS specifies the desired dynamics of the uncertain switched linear system, while the SAC makes the uncertain switched linear system dynamics track the SRS dynamics. By multiple Lyapunov functions method, we prove that the closed‐loop switched system is uniformly bounded under arbitrary switching laws, provided that a linear matrix inequality (LMI)‐based sufficient condition is satisfied. We apply the proposed approach to a typical servo‐hydraulic positioning system. The simulation results show that the proposed approach is fairly insensitive to disturbances, uncertainties and non‐smoothly varying dynamics, and performs better than a proportional‐derivative controller or a minimal controller synthesis controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In the framework of sampled‐data control, finite‐time boundedness (FTB) of switched systems with time‐varying delays is investigated. Sufficient conditions for FTB of switched systems with time‐varying delays via sampled‐data control are proposed. Moreover, considering the relationship between the sampling period and the mode‐dependent average dwell time, switching signals are designed. In addition, finite‐time weighted L2‐gain (FTW‐L2‐gain) of switched systems with time‐varying delays is proposed to measure their disturbance tolerance capacity within a finite‐time interval. Multiple Lyapunov‐Krasovskii functionals are applied to complete subsequent proofs in detail. Simulation results are exemplified to verify the proposed method.  相似文献   

19.
Controlling continuous‐time input‐delayed nonminimum‐phase linear systems is addressed in the presence of actuator saturation and output‐disturbances. Focusing on output‐reference tracking, the control design is dealt with in the pseudo‐polynomials ring. A quite appealing L2 ‐tracking performance is shown to be achievable in the presence of arbitrary inputs i.e. the output reference and the output disturbance. The performance is formulated in terms of a well defined output‐reference mismatch error (ORME), depending on the inputs’ rate and their compatibility with the actuator saturation constraint.  相似文献   

20.
In this paper, the H control problem is investigated for a general class of discrete‐time nonlinear stochastic systems with state‐, control‐, and disturbance‐dependent noises (also called (x, u, v)‐dependent noises). In the system under study, the system state, the control input, and the disturbance input are all coupled with white noises, and this gives rise to considerable difficulties in the stability and H performance analysis. By using the inequality techniques, a sufficient condition is established for the existence of the desired controller such that the closed‐loop system is mean‐square asymptotically stable and also satisfies H performance constraint for all nonzero exogenous disturbances under the zero‐initial condition. The completing square technique is used to design the H controller with hope to reduce the resulting conservatism, and a special algebraic identity is employed to deal with the cross‐terms induced by (x, u, v)‐dependent noises. Several corollaries with simplified conditions are presented to facilitate the controller design. The effectiveness of the developed methods is demonstrated by two numerical examples with one concerning the multiplier‐accelerator macroeconomic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号