首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A robust adaptive neural observer design is proposed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities and bounded disturbances. The modal decomposition technique is initially applied to the PDE system to formulate it as an infinite-dimensional singular perturbation model of ordinary differential equations (ODEs). By singular perturbations, an approximate nonlinear ODE system that captures the dominant (slow) dynamics of the PDE system is thus derived. A neural modal observer is subsequently constructed on the basis of the slow system for its state estimation. A linear matrix inequality (LMI) approach to the design of robust adaptive neural modal observers is developed such that the state estimation error of the slow system is uniformly ultimately bounded (UUB) with an ultimate bound. Furthermore, using the existing LMI optimization technique, a suboptimal robust adaptive neural modal observer can be obtained in the sense of minimizing an upper bound of the peak gains in the ultimate bound. In addition, using two-time-scale property of the singularly perturbed model, it is shown that the resulting state estimation error of the actual PDE system is UUB. Finally, the proposed method is applied to the estimation of temperature profile for a catalytic rod.  相似文献   

2.
This paper is concerned with an adaptive state estimation problem for a class of nonlinear stochastic systems with unknown constant parameters. These nonlinear systems have a linear-in-parameter structure, and the nonlinearity is assumed to be bounded in a Lipschitz-like manner. Using stochastic counterparts of Lyapunov stability theory, we present adaptive state and parameter estimators with ultimately exponentially bounded estimator errors in the sense of mean square for both continuous-time and discrete-time nonlinear stochastic systems. Sufficient conditions are given in terms of the solvability of LMIs. Moreover, we also introduce a suboptimal design approach to optimizing the upper bound of the mean-square error of parameter estimation. This suboptimal design procedure is also realized by LMI computations. By a martingale method, we also show that the related Lyapunov function has a non-negative Lyapunov exponent.  相似文献   

3.
This paper presents a design technique for the synthesis of robust observers for linear dynamical systems with uncertain parameters. The perturbations under consideration are modelled as unknown but bounded disturbances and an ellipsoidal set-theoretic approach is used to formulate the optimal-observer design problem. The optimal criterion introduced here is the minimization of the ‘size’ of the bounding ellipsoid of the estimation error. A necessary and sufficient condition for this optimal design problem is presented. The results are stated in terms of a reduced-order observer with constant gain matrix, which is then determined by solving a matrix Riccati-type equation. Furthermore, a gradient-search algorithm is presented to find the optimal solution when the free parameter that enters in the construction of the bounding ellipsoids of the estimation error is considered as a design parameter. The effectiveness of the proposed approach is illustrated through a numerical example.  相似文献   

4.
The state estimation problem is discussed for discrete Markovian jump neural networks with time‐varying delays in terms of linear matrix inequality (LMI) approach. The considered transition probabilities are assumed to be time‐variant and partially unknown. The aim of the state estimation problem is to design a state estimator to estimate the neuron states and ensure the stochastic stability of the error‐state system. A delay‐dependent sufficient condition for the existence of the desired state estimator is proposed. An explicit expression of the desired estimator is also given. A numerical example is introduced to show the effectiveness of the given result. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This contribution proposes a robust recursive algorithm for the state estimation of linear models with unknown but bounded disturbances corrupting both the state and measurement vectors. A novel approach based on state bounding techniques is presented. The proposed algorithm can be decomposed into two steps: time updating and observation updating that uses a switching estimation Kalman-like gain matrix. Particular emphasis will be given to the design of a weighting factor that ensures the stability of the estimation error.  相似文献   

6.
This paper discusses the exponential state estimation problem for stochastic complex dynamical networks involving multi-delayed and adaptive control. A new approach, very different to the linear matrix inequality (LMI) method, has been developed to solve the above problem. Meanwhile, some sufficient conditions are derived to ensure the exponential stability in pth moment for the dynamics of state estimator error. The feedback gain update law is found by the adaptive control technique. An illustrative example is provided to show the usefulness and effectiveness of the proposed design method.  相似文献   

7.
研究了受L_2范数有界未知输入影响的一类线性连续时间Markov跳跃系统鲁棒H_∞故障估计问题.应用自适应观测器作为故障估计器,将鲁棒H_∞故障估计问题归结为随机H_∞滤波问题.推导并证明了问题可解的充分条件,并通过求解线性矩阵不等式得到了H_∞故障估计器参数矩阵的解.最后,数字算例验证了所提方法的有效性.
Abstract:
The problem of robust H_∞ fault estimation is studied for a class of continuous-time Markovian jump systems with L_2 norm bounded unknown input.By using an adaptive observer as a fault estimator, the design of robust H_∞ fault estimator is formulated as a stochastic H_∞ filtering problem.A sufficient condition for the existence of a robust H_∞ fault estimator is derived by applying matrix inequality technique, and a solution to the parameter matrices of the fault estimator can be obtained by solving a set of linear matrix inequalities.A numerical example shows the effectiveness of the proposed method.  相似文献   

8.
In this paper, the joint input and state estimation problem is considered for linear discrete-time stochastic systems. An event-based transmission scheme is proposed with which the current measurement is released to the estimator only when the difference from the previously transmitted one is greater than a prescribed threshold. The purpose of this paper is to design an event-based recursive input and state estimator such that the estimation error covariances have guaranteed upper bounds at all times. The estimator gains are calculated by solving two constrained optimisation problems and the upper bounds of the estimation error covariances are obtained in form of the solution to Riccati-like difference equations. Special efforts are made on the choices of appropriate scalar parameter sequences in order to reduce the upper bounds. In the special case of linear time-invariant system, sufficient conditions are acquired under which the upper bound of the error covariance of the state estimation is asymptomatically bounded. Numerical simulations are conducted to illustrate the effectiveness of the proposed estimation algorithm.  相似文献   

9.
This paper studies the problem of an H-norm and variance-constrained state estimator design for uncertain linear discrete-time systems. The system under consideration is subjected to time-invariant norm-bounded parameter uncertainties in both the state and measurement matrices. The problem addressed is the design of a gain-scheduled linear state estimator such that, for all admissible measurable uncertainties, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H-norm upper bound constraint, simultaneously. The conditions for the existence of desired estimators are obtained in terms of matrix inequalities, and the explicit expression of these estimators is also derived. A numerical example is provided to demonstrate various aspects of theoretical results  相似文献   

10.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

11.
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.  相似文献   

12.
In this paper, the adaptive state estimation and state-feedback stabilization problems for a class of nonlinear stochastic systems with unknown constant parameters are studied. The sequential design methods are proposed to construct the adaptive controllers. Adaptive state and parameter estimators are designed by using a stochastic Lyapunov method and the separation theory of the design for the state-feedback gain and observer gain, which guarantees that the closed-loop system is asymptotically stable in the mean-square sense. Sufficient conditions for the existence of parameters estimator are given in terms of linear matrix inequalities. Finally, the numerical examples are provided to illustrate the feasibility of the proposed theoretical results.  相似文献   

13.
The paper is concerned with the state estimator design problem for perturbed linear continuous-time systems with H norm and variance constraints. The perturbation is assumed to be time-invariant and norm-bounded and enters into both the state and measurement matrices. The problem we address is to design a linear state estimator such that, for all admissible measurable perturbations, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H norm upper bound constraint, simultaneously. Existence conditions of the desired estimators are derived in terms of Riccati-type matrix inequalities, and the analytical expression of these estimators is also presented. A numerical example is provided to show the directness and effectiveness of the proposed design approach  相似文献   

14.
This paper develops fuzzy H1 filter for state estimation approach for nonlinear discrete-time systems with multiple time delays and unknown bounded disturbances. We design a stable fuzzy H1 filter based on the Takagi-Sugeno (T-S) fuzzy model, which assures asymptotic stability and a prescribed H1 index for the filtering error system. Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem. The LMI problem can be efficiently solved with global convergence using the interior point algorithm. Simulation examples are provided to illustrate the design procedure of the proposed method.  相似文献   

15.
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique.Neural networks are used to approximate unknown time-delay functions.Delay-dependent filters are intro- duced for state estimation.The domination method is used to deal with the smooth time-delay basis functions.The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error.Based on Lyapunov-Krasoviskii functional,the semi-global uniform ultimate boundedness(SGUUB)of all the signals in the closed-loop system is proved.The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.  相似文献   

16.
未知输出反馈非线性时滞系统自适应神经网络跟踪控制   总被引:6,自引:1,他引:6  
An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique. Neural networks are used to approximate unknown time-delay functions. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error. Based on Lyapunov-Krasoviskii functional, the semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.  相似文献   

17.
The problem of state estimation for a class of non-linear systems with Lipschitz non-linearities is addressed using sliding-mode estimators. Stability conditions have been found to guarantee asymptotic convergence to zero of the estimation error in the absence of noise and non-divergence if the state perturbations and measurement noise are bounded. A method is proposed to find a suitable solution to the algebraic Riccati equation on which the design of the estimator is based. The performance of the resulting sliding-mode filter minimizes an upper bound on the asymptotic estimation error. Based on such an approach, a sliding-mode estimator may be designed so as to outperform the extended Kalman filter in practical applications with models affected by uncertainty and strong, possibly unknown non-linearities, as shown by means of simulations.  相似文献   

18.
In this paper, we consider a minimax approach to the estimation and filtering problems in the stochastic framework, where covariances of the random factors are completely unknown. The term ‘random factors’ refers either to unknown parameters and measurement noise in the estimation problem or to disturbance process and the initial state of a linear discrete-time dynamic system in the filtering problem. We introduce a notion of the attenuation level of random factors as a performance measure for both a linear unbiased estimate and a filter. This is the worst-case variance of the estimation error normalised by the sum of variances of all random factors over all nonzero covariance matrices. It is shown that this performance measure is equal to the spectral norm of the ‘transfer matrix’ and therefore the minimax estimate and filter can be computed in terms of linear matrix inequalities (LMIs). Moreover, the explicit formulae for both the minimax estimate and the minimal value of the attenuation level are presented in the estimation problem. It turns out that the above attenuation level of random factors coincides with the attenuation level of deterministic factors that is the worst-case normalised squared Euclidian norm of the estimation error over all nonzero sample values of random factors. In addition, we demonstrate that the LMI technique can be applied to derive the optimal robust estimator and filter, when there is a priori information about convex polyhedral sets which unknown covariance matrices of random factors belong to. Two illustrative examples show advantages of the minimax approach proposed.  相似文献   

19.
A novel adaptive version of the divided difference filter (DDF) applicable to non-linear systems with a linear output equation is presented in this work. In order to make the filter robust to modeling errors, upper bounds on the state covariance matrix are derived. The parameters of this upper bound are then estimated using a combination of offline tuning and online optimization with a linear matrix inequality (LMI) constraint, which ensures that the predicted output error covariance is larger than the observed output error covariance. The resulting sub-optimal, high-gain filter is applied to the problem of joint state and parameter estimation. Simulation results demonstrate the superior performance of the proposed filter as compared to the standard DDF.  相似文献   

20.
线性离散周期系统满意估计   总被引:2,自引:0,他引:2  
针对线性离散周期系统的状态估计问题,运用提升原理提取期望极点指标,同时期望估计误差系统满足稳态误差方差/H混合指标,采用代数Riccati矩阵不等式法与数值递推算法对误差系统进行了上述指标的满意估计设计,并根据满意控制的基本理论将上述满意估计问题转化为线性矩阵不等式(LMI)的线性规划问题,从而运用LMI技术求解并设计了可行的满意估计,数值算例验证了相关算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号