首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While many control charts have been developed for monitoring the time interval (t) between the occurrences of an event, many other charts are employed to examine the magnitude (x) of the event. These two types of control charts have usually been investigated and applied separately with limited syntheses in conventional statistical process control (SPC) methods. This article presents an SPC method for simultaneously monitoring the time interval t and magnitude x. It, essentially, combines a t chart and an x chart, and is therefore referred to as a t&x chart. The new chart is more effective than an individual t chart or individual x chart for detecting the out-of-control status of the event, in particular for detecting downward shifts (sparse occurrence and/or small magnitude). More profound is that, compared with an individual t or x chart, the detection effectiveness of the t&x chart is more invariable against different types of shifts, i.e. t shift, x shift and joint shift in t and x. The t&x chart has demonstrated its potential not only for manufacturing systems, but also for non-manufacturing sectors such as supply chain management, office administration and health care industry.  相似文献   

2.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we propose a new control chart that integrates a powerful high‐dimensional covariance matrix test with the exponentially weighted moving average procedure for monitoring high‐dimensional variability with individual observations. Design and implementation of the proposed chart are provided, including search algorithm and a table for the control limits, diagnostic aids after the signal, effect of misspecifying the in‐control distribution, and a bootstrap procedure. Monte Carlo simulation results show that the new chart, with its powerful inherited properties, provides satisfactory performance in various cases, especially for covariance shifts that involve diagonal components. The application of the proposed method is illustrated with a real data example from a white wine production process.  相似文献   

4.
A new two-sided cumulative sum quality control scheme is proposed. The new scheme was developed specifically to be generalized to a multivariate cumulative sum quality control scheme. The multivariate version will be examined in a subsequent paper; this article evaluates the univariate version. A comparison of the conventional two-sided cumulative sum scheme and the proposed scheme indicates that the new scheme has slightly better properties (ratio of on-aim to off-aim average run lengths) than the conventional scheme. Steady state average run lengths are discussed. The new scheme and the conventional two-sided cumulative sum scheme have equivalent steady state average run lengths. Methods for implementing the fast initial response feature for the new cumulative sum scheme are given. A comparison of average run lengths for the conventional and proposed schemes with fast initial response features is also favorable to the new scheme. A Markov chain approximation is used to calculate the average run lengths of the new scheme.  相似文献   

5.
Count data processes are often encountered in manufacturing and service industries. To describe the autocorrelation structure of such processes, a Poisson integer‐valued autoregressive model of order 1, namely, Poisson INAR(1) model, might be used. In this study, we propose a two‐sided cumulative sum control chart for monitoring Poisson INAR(1) processes with the aim of detecting changes in the process mean in both positive and negative directions. A trivariate Markov chain approach is developed for exact evaluation of the ARL performance of the chart in addition to a computationally efficient approximation based on bivariate Markov chains. The design of the chart for an ARL‐unbiased performance and the analyses of the out‐of‐control performances are discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In many industrial manufacturing processes, the ratio between two normal random variables plays a key role in ensuring quality of products. Thus,  monitoring this ratio is an important task that is well worth considering. In this paper, we combine a variable sampling interval (VSI) strategy with a cumulative sum (CUSUM) scheme to create a new type of control chart for purpose of tracking the ratio between two normal variables. The average time to signal (ATS) and the expected average time to signal (EATS) criteria are used to evaluate the performance of the new VSI CUSUM RZ control chart. The  numerical results show that the proposed control chart has much more attractive performance in comparison with the standard CUSUM-RZ control chart and the VSI EWMA-RZ control chart.  相似文献   

7.
The adaptive control feature and CUSUM chart are two monitoring schemes that are much more effective than the traditional static Shewhart chart in detecting process shifts in mean and variance. However, the designs and analyses of the adaptive CUSUM chart are mathematically intractable and the operation is very laborious. This article proposes a VSSI WLC scheme, which is a weighted‐loss‐function‐based CUSUM (WLC) scheme using variable sample sizes and sampling intervals (VSSI). This scheme detects the two‐sided mean shift and increasing standard deviation shift based on a single statistic WL (the weighted loss function). Most importantly, the VSSI WLC scheme is much easier to operate and design than a VSSI CCC scheme which comprises three individual CUSUM charts (two of them monitoring the increasing and decreasing mean shifts and one monitoring the increasing variance shift). Overall, the VSSI WLC scheme is much more effective than the static &S charts (by 72.36%), the VSSI &S charts (by 30.97%) and the static WLC scheme (by 50.94%) for detection. It is even more effective than the complicated VSSI CCC scheme for most cases. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Exponentially distributed data are commonly encountered in high-quality processes. Control charts dedicated to the univariate exponential distribution have been extensively studied by many researchers. In this paper, we investigate a multivariate cumulative sum (MCUSUM) control chart for monitoring Gumbel's bivariate exponential (GBE) data. Some tables are provided to determine the optimal design parameters of the proposed MCUSUM GBE chart. Furthermore, both zero-state and steady-state properties of the proposed MCUSUM GBE chart for the raw and the transformed GBE data are compared with the multivariate exponentially weighted moving average (MEWMA) chart and the paired individual cumulative sum (CUSUM) chart. The results show that the proposed MCUSUM GBE chart outperforms the other two types of control charts for most shift domains. In addition, an extension to Gumbel's multivariate exponential (GME) distribution is also investigated. Finally, an illustrative example is provided in order to explain how the proposed MCUSUM GBE chart can be implemented in practice.  相似文献   

9.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The variable sampling rate (VSR) schemes for detecting the shift in process mean have been extensively analyzed; however, adding the VSR feature to the control charts for monitoring process dispersion has not been thoroughly investigated. In this research, a novel VSR control scheme, sequential exponentially weighted moving average inverse normal transformation (EWMA INT) at fixed times chart (called (SEIFT) chart), which integrates the sequential EWMA scheme at fix times with the INT statistic, is proposed to detect both the increase and decrease in process dispersion. Moreover, the sample size at each sampling time is also allowed to vary. The Markov chain method is used to evaluate the performance of this new control chart. Numerical analysis reveals that this SEIFT chart gives significant improvement on detection ability than the fixed sampling rate schemes. Compared with other control schemes, the good properties of the INT statistic makes this SEIFT chart easy to design and convenient to implement. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Detecting dynamic mean shifts is particularly important in monitoring feedback‐controlled processes in which time‐varying shifts are usually observed. When multivariate control charts are being utilized, one way to improve performance is to reduce dimensions. However, it is difficult to identify and remove non‐informative variables statically in a process with dynamic shifts, as the contribution of each variable changes continuously over time. In this paper, we propose an adaptive dimension reduction scheme that aims to reduce dimensions of multivariate control charts through online variable evaluation and selection. The resulting chart is expected to keep only informative variables and hence maximize the sensitivity of control charts. Specifically, two sets of projection matrices are presented and dimension reduction is achieved via projecting process vectors into a low‐dimensional space. Although developed based on feedback‐controlled processes, the proposed scheme can be easily extended to monitor general multivariate applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
High‐dimensional applications pose a significant challenge to the capability of conventional statistical process control techniques in detecting abnormal changes in process parameters. These techniques fail to recognize out‐of‐control signals and locate the root causes of faults especially when small shifts occur in high‐dimensional variables under the sparsity assumption of process mean changes. In this paper, we propose a variable selection‐based multivariate cumulative sum (VS‐MCUSUM) chart for enhancing sensitivity to out‐of‐control conditions in high‐dimensional processes. While other existing charts with variable selection techniques tend to show weak performances in detecting small shifts in process parameters due to the misidentification of the ‘faulty’ parameters, the proposed chart performs well for small process shifts in identifying the parameters. The performance of the VS‐MCUSUM chart under different combinations of design parameters is compared with the conventional MCUSUM and the VS‐multivariate exponentially weighted moving average control charts. Finally, a case study is presented as a real‐life example to illustrate the operational procedures of the proposed chart. Both the simulation and numerical studies show the superior performance of the proposed chart in detecting mean shift in multivariate processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts have found extensive applications in industry. The sensitivity of these quality control schemes can be increased by using fast initial response (FIR) features. In this paper, we introduce some improved FIR features for EWMA and CUSUM control charts and evaluate their performance in terms of average run length. We compare the proposed FIR‐based EWMA and CUSUM control schemes with some existing control schemes, that is, EWMA, FIR‐EWMA, CUSUM, and FIR‐CUSUM. It is noteworthy that the proposed control schemes are uniformly better than the other schemes considered here. An illustrative example is also given to demonstrate the implementation of the proposed control schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This article compares the effectiveness and robustness of nine typical control charts for monitoring both process mean and variance, including the most effective optimal and adaptive sequential probability ratio test (SPRT) charts. The nine charts are categorized into three types (the type, CUSUM type and SPRT type) and three versions (the basic version, optimal version and adaptive version). While the charting parameters of the basic charts are determined by common wisdoms, the parameters of the optimal and adaptive charts are designed optimally in order to minimize an index average extra quadratic loss for the best overall performance. Moreover, the probability distributions of the mean shift δµ and standard deviation shift δσ are studied explicitly as the influential factors in a factorial experiment. The main findings obtained in this study include: (1) From an overall viewpoint, the SPRT‐type chart is more effective than the CUSUM‐type chart and type chart by 15 and 73%, respectively; (2) in general, the adaptive chart outperforms the optimal chart and basic chart by 16 and 97%, respectively; (3) the optimal CUSUM chart is the most effective fixed sample size and sampling interval chart and the optimal SPRT chart is the best choice among the adaptive charts; and (4) the optimal sample sizes of both the charts and the CUSUM charts are always equal to one. Furthermore, this article provides several design tables which contain the optimal parameter values and performance indices of 54 charts under different specifications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The variable sampling interval (VSI) feature enhances the sensitivity of a control chart that is based on fixed sampling interval (FSI). In this paper, we enhance the sensitivities of the auxiliary information-based (AIB) adaptive Crosier cumulative sum (CUSUM) (AIB-ACC) and adaptive exponentially weighted moving average (EWMA) (AIB-AE) charts using the VSI feature when monitoring a mean shift which is expected to lie within a given interval. The Monte Carlo simulations are used to compute zero-state and steady-state run length properties of these control charts. It is found that the AIB-ACC and AIB-AE charts with VSI feature are uniformly more sensitive than those based on FSI feature. Real datasets are also considered to demonstrate the implementation of these control charts.  相似文献   

16.
The Bernoulli cumulative sum (CUSUM) chart has been shown to be effective for monitoring the rate of nonconforming items in high‐quality processes where the in‐control proportion of nonconforming items (p0) is low. The implementation of the Bernoulli CUSUM chart is often based on the assumption that the in‐control value p0 is known; therefore, when p0 is unknown, accurate estimation is necessary. We recommend using a Bayes estimator to estimate the value of p0 to incorporate practitioner knowledge and to avoid estimation issues when no nonconforming items are observed in phase I. We also investigate the effects of parameter estimation in phase I on the upper‐sided Bernoulli CUSUM chart by using the expected value of the average number of observations to signal (ANOS) and the standard deviation of the ANOS. It is found that the effects of parameter estimation on the Bernoulli CUSUM chart are more significant than those on the Shewhart‐type geometric chart. The low p0 values inherent to high‐quality processes imply that a very large, and often unrealistic, sample size may be needed to accurately estimate p0. A methodology to identify a continuous variable to monitor is highly recommended when the value of p0 is low and the required phase I sample size is impractically large. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The Shewhart X chart (or X chart) is widely used to monitor the mean of a quality characteristic x. This chart decides the process status based on the magnitude of the sample mean x and is effective for detecting large mean shifts. The synthetic chart is also a Shewhart type chart for monitoring the process mean, but it utilises the information about the time interval between two nonconforming samples. Here a sample is nonconforming if its x value falls beyond the predetermined warning limits. Unlike the X chart, the synthetic chart is more powerful to detect small shifts. The applications of the X and synthetic charts cover a wide variety of manufacturing processes and production lines, e.g., the monitoring of the mean values of the inside diameter of a piston-ring, the viscosity of aircraft paint, the resistivity of silicon wafers. This article proposes a combined scheme, the Syn-X chart, that comprises a synthetic chart and an X chart. The results of the performance studies show that the Syn-X chart always outperforms the individual X chart and synthetic chart under different conditions. It is more effective than the X chart and synthetic chart by 47% and 20%, respectively, over the wide range of mean shift values in different experiment runs.  相似文献   

19.
Recently, the monitoring of compositional data by means of control charts has been investigated in the statistical process control literature. In this article, we develop a Phase II multivariate exponentially weighted moving average control chart, for the continuous surveillance of compositional data based on a transformation into coordinate representation. We use a Markov chain approximation to determine the performance of the proposed multivariate control chart. The optimal multivariate exponentially weighted moving average smoothing constants, control limits, and out‐of‐control average run lengths have been computed for different combinations of the in‐control average run lengths and the number of variables. Several tables are presented and enumerated to show the statistical performance of the proposed control chart. An example illustrates the use of this chart on an industrial problem from a plant in Europe.  相似文献   

20.
This paper investigates the statistical performance of a sequential probability ratio test control chart for monitoring the dispersion of a normally distributed process. The expressions for statistical performance measures of the chart are derived using a Markov chain approach. It is shown through numerical comparisons that the overall statistical performance of this chart is superior to that of the existing competitor charts for dispersion. An example illustrating an application of the chart in practice is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号