首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the effects of feeding pasteurized waste milk (pWM) to calves on antimicrobial resistance of fecal Escherichia coli at both phenotypic and genotypic levels. Fifty-two Holstein female calves (3 ± 1.3 d of age) were fed 1 of the 2 different types of milk: milk replacer (MR) without antimicrobials or pWM with β-lactam residues until weaning at 49 d of age. Fecal swabs of all calves were obtained on d 0, 35, and 56 of the study and 3 E. coli isolates per sample were studied. Phenotypic resistance was tested by the disk diffusion method against a panel of 12 antimicrobials. A total of 13 resistance genes consisting of β-lactam, sulfonamide, tetracycline, and aminoglycoside families were examined by PCR. Feeding pWM to calves increased the presence of phenotypic resistance to ampicillin, cephalotin, ceftiofur, and florfenicol in fecal E. coli compared with MR-fed calves. However, the presence of resistance to sulfonamides, tetracyclines, and aminoglycosides was common in dairy calves independent of their milk-feeding source, suggesting other factors apart from the feeding source are involved in the emergence of antimicrobial resistance.  相似文献   

2.
The objective of this prospective cohort study was to describe the relationship between exposure to antimicrobials, through both the milk diet and systemic therapy, and to describe antimicrobial resistance of fecal Escherichia coli in dairy calves pre- and postweaning. A convenience sample of 15 Minnesota dairy farms was chosen, representing 3 equal cohorts of milk diet fed to preweaned calves: medicated milk replacer (MMR), nonmedicated milk replacer (NMR), or pasteurized nonsaleable milk (PNM). Five newborn calves were enrolled on each farm, with fecal samples collected from each calf at 1, 3, 5, and 16 wk of age. After isolation, 3 colonies of E. coli were randomly selected from each sample to determine antimicrobial susceptibility by minimum inhibitory concentration (Sensititer, Thermo Scientific, Waltham, MA) to 8 antimicrobials in 8 classes. The isolate was given an antimicrobial resistance score (ARS) according to the number of antimicrobial classes to which it was resistant. Any isolate resistant to 3 or more antimicrobials was defined as being multidrug resistant (MDR). Relationships between ARS and MDR (dependent variables) and possible explanatory variables were analyzed using mixed multivariable linear and logistic regression models, respectively, with critical P-values adjusted for multiple contrasts. Seventy percent of isolates were resistant to sulfadimethoxine. For wk 1 and 3, the mean ARS values were greatest for fecal E. coli from calves fed MMR or PNM compared with NMR, with no difference in ARS values between the MMR and PNM groups at either time point. At wk 5, the mean ARS value was greatest for fecal E. coli from calves fed MMR (3.56 ± 0.45; mean ± SE), intermediate for calves fed PNM (2.64 ± 0.45), and lowest for calves fed NMR (1.54 ± 0.45). However, by wk 16, the mean ARS values were ≤1.0 and did not differ among milk diets. Evaluation of the proportion of isolates with MDR mirrored the results of the ARS analysis (MDR more prevalent in MMR and PNM groups preweaning; no difference among milk diets at 16 wk). There was a tendency for an increase in ARS at wk 5 (1.28 ± 0.70), and the odds for MDR in fecal E. coli were estimated to be 5.2 (95% confidence interval = 0.67, 35.7) and 101.1 (95% confidence interval = 1.15, >999.9) higher at wk 3 and 5 if the calf was treated with a systemic antimicrobial within the 14-d period before sampling. These findings suggest that exposure to antimicrobials through the milk diet or systemic therapy may result in a transient increase in resistance in fecal E. coli, but once the antimicrobial pressure is removed, susceptible E. coli are able to flourish again, resulting in an overall decrease in resistance.  相似文献   

3.
Diarrhea in calves has a significant effect on the dairy industry. A common management practice for preventing or decreasing the effects of such disease in preweaned calves is by the use of antimicrobials in milk or milk replacer. In this study, Escherichia coli antimicrobial resistance in fecal samples collected from calves 2 to 8 d of age that had or had not received antimicrobials in the milk and that had or had not signs of diarrhea by inspection of fecal consistency were investigated. Specifically, resistance of E. coli isolates to individual antimicrobials, multiresistance patterns, and presence of virulence factors were analyzed. Escherichia coli isolates were tested for susceptibility to 12 antimicrobials by use of a Kirby-Bauer disk diffusion assay. The study was conducted at 3 farms, 1 administering growth-promoting antimicrobials (GPA) in the milk and 2 not using GPA in the milk (NGPA). All isolates were susceptible to ciprofloxacin and cefepime. From the total isolates tested, 84% (n = 251) were resistant to at least 2 antimicrobials and 81% (n = 251) were resistant to 3 or more antimicrobials. When antimicrobial resistance was compared between GPA and NGPA, it was observed that the GPA group had higher odds of antimicrobial resistance for most of the individual antimicrobials tested. No significant correlation of virulence factors in GPA or NGPA and diarrheic or non-diarrheic (control) fecal samples was found. Of the 32 virulence factors evaluated, 21 were detected in the study population; the incidence of only 1 virulence factor was statistically significant in each of the diarrheic status (diarrheic or non-diarrheic) and treatment status (NGPA or GPA) groups. Phylogenetic analysis based on the nucleotide sequence of the DNA gyrase gene (gyrB) from 31 fecal E. coli isolates revealed 3 main clades.  相似文献   

4.
The objective of the current research was to determine if pasteurization of nonsaleable waste milk influences fecal Salmonella concentrations and prevalence, or antimicrobial susceptibility and serotype of the cultured isolates. Holstein dairy calves (n = 211) were housed on a single commercial dairy in the southwestern United States and randomly allotted to be fed either pasteurized (PWM; n = 128 calves) or nonpasteurized waste milk (NPWM; n = 83 calves). Fecal samples were collected via rectal palpation or from freshly voided, undisturbed fecal pats, weekly during the first 4 wk of the animal's life and then again at weaning. Eight total collections were made and 1,117 fecal samples cultured for Salmonella. One isolate from each culture-positive fecal sample was preserved for antimicrobial susceptibility screening and serotyping. Sixty-nine percent of the fecal samples were culture positive for Salmonella with no difference due to treatment (67.7 and 69% Salmonella positive for PWM and NPWM treatments, respectively). Few fecal samples (178/1,117; 15.9%) contained Salmonella concentrations above the limit of detection (~1 cfu/g of feces) with concentrations ranging from 1.0 to 6.46 cfu (log10)/g of feces. Concentration was not affected by treatment. Seventeen different serotypes were identified, the majority of which were Montevideo and Anatum. A greater percentage of Typhimurium (87 vs. 13%), Muenchen (88 vs. 12%), and Derby (91 vs. 9%) were recovered from calves fed PWM compared with NPWM-fed calves. Conversely, Newport (12.5 vs. 86%), Bredeney (22.2 vs. 77.8%), and Muenster (12.5 vs. 87.5%) were lower in PWM compared with NPWM treatments. The majority (66.7%) of isolates were susceptible to all of the antibiotics examined. Results from this one commercial dairy suggest that milkborne Salmonella is not an important vector of transmission in dairy neonates, nor does pasteurization of waste milk influence fecal shedding of this pathogen. Caution should be used, however, when extrapolating results to other farms as Salmonella contamination of milk on farm is well documented. The potential benefits of pasteurization in disease prevention outweigh the potential risks of feeding a nonpasteurized product and warrants incorporation into any calf-rearing program using nonsaleable waste milk for feeding young dairy neonates.  相似文献   

5.
Feeding behavior of calves fed small or large amounts of milk   总被引:1,自引:0,他引:1  
Little is known about feeding behavior in group-housed calves fed with an automated feeding system. To examine the influence of milk feeding level on feeding behavior in such a system, we fed calves either 4 L of milk replacer per d (LIM) or allowed ad libitum (AL) intake (n = 25 per treatment). In a second experiment another set of calves was fed 4 L (low milk volume, LM) or 12 L (high milk volume, HM) of whole milk (n = 14 per treatment). Results were analyzed separately using a mixed model including calf, treatment, and time as factors, and feeding behavior as variables. Milk intake by AL or HM calves increased during the first 2 wk, reaching a maximum intake that reached a plateau during the next 4 wk. Concentrate intake was negligible during the first 14 d, with LIM and LM calves increasing their consumption from d 22. Concentrate intake by AL and HM calves remained low until weaning in experiment 1 and the end of trial in experiment 2 (d 43 for both). The frequency of visits was higher in LIM and LM calves than in AL and HM calves during the first 42 d, with most visits being unrewarded (∼90%). This resulted in higher occupancy time of the feeder by LIM and LM calves. During weaning in experiment 1 (d 44 to 48), there was no difference in occupancy time between treatments. Calves in the AL and HM groups distributed their visits throughout the day, whereas LIM and LM calves made most visits just before the time when the next allowance of milk became available. In experiment 1, AL calves showed a greater weight gain during the first 21 d but LIM calves had greater gains between d 22 and 50. However, the overall average daily weight gain was higher for AL calves. In experiment 2, HM calves had a greater gain than LM calves for the first 4 wk of trial but there was no difference between treatments during the last 2 wk. There were no differences between treatments in the incidence of disease in either experiment. The duration of time spent lying down in experiment 2 was higher for HM calves but only when they were older (4 to 5 wk). No differences were found between treatments at 2 wk of age. In conclusion, feeding high levels of milk or replacer improved weight gain and reduced unrewarded visits to the milk feeder, improving the efficiency of use of the milk feeders. However, it reduced concentrate intake and the advantages were less obvious after 3 wk of age. No increased incidence of disease was found for high-fed calves (AL and HM groups). Lying time was also higher for high-fed calves but only at an older age (4 to 5 wk).  相似文献   

6.
《Journal of dairy science》2022,105(2):1242-1254
Feeding waste milk containing antimicrobial residues (WMA) to calves has been associated with increased antimicrobial resistance in calves' commensal bacterial flora. The objectives of this study were (1) to document practices related to the disposal of WMA on Swiss dairy farms and (2) to evaluate the association between farm characteristics and the feeding of WMA to calves. A web-based questionnaire on practices surrounding waste milk disposal was completed by 1,625 dairy producers (10.9% of solicited producers). Logistic regression models were built to evaluate the association between herd characteristics and the practice of feeding WMA. Waste milk produced during and up to the first milking after completion of antimicrobial treatment or during the withdrawal period was fed to at least some of the calves on 47.3% of respondents' farms. Farms in organic production had lower odds of feeding WMA to calves than nonorganic farms [odds ratio (OR) 0.59]. Farms located in the eastern region of Switzerland, as opposed to those in the western region, had increased odds of feeding WMA to calves (OR 2.01). A yearly average bulk tank somatic cell count ≥150,000 cells/mL was associated with increased odds of feeding WMA to calves compared with the reference category of <100,000 cells/mL (OR 1.62). An average cow-level annual milk production ≥8,500 L was associated with increased odds of feeding WMA to calves compared with farms in the interquartile range with a production of 6,500 to 8,499 L (OR 1.24). Further research is warranted to investigate dairy farmers' motivations affecting this practice, and to quantitatively define calves' exposure to antimicrobial residues and the resulting antimicrobial resistance in calves' commensal flora on these farms.  相似文献   

7.
Pasteurization is carried out in dairy industries to kill harmful bacteria present in raw milk. However, endospore-forming bacteria, such as Bacillus, cannot be completely eliminated by pasteurization. In this study, a total of 114 Bacillus strains were isolated from 133 pasteurized milk samples. Antibiotic susceptibility tests showed that the percentage of Bacillus with intrinsic resistance to ampicillin and penicillin were 80 and 86%, respectively. Meanwhile, some Bacillus isolates had acquired resistance, including trimethoprim-sulfamethoxazole resistance (10 isolates), clindamycin resistance (8 isolates), erythromycin resistance (2 isolates), and tetracycline resistance (1 isolate). To further locate these acquired resistance genes, the plasmids were investigated in these 16 Bacillus strains. The plasmid profile indicated that Bacillus cereus BA008, BA117, and BA119 harbored plasmids, respectively. Subsequently, the Illumina Novaseq PE150 was applied for the genomic and plasmid DNA sequencing. Notably, the gene tetL encoding tetracycline efflux protein was found to be located on plasmid pBC46-TL of B. cereus BA117. In vitro conjugative transfer indicated that pBC46-TL can be transferred into Bacillus invictae BA142, Bacillus safensis BA143, and Bacillus licheniformis BA130. The frequencies were of 1.5 × 10?7 to 1.7 × 10?5 transconjugants per donor cells. Therefore, Bacillus strains with acquired antibiotic resistance may represent a potential risk for the spread of antibiotic resistance between Bacillus and other clinical pathogens via horizontal gene transfer.  相似文献   

8.
Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography–tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60%) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue–positive samples, 44% (11/25) and 16% (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28%), oxytetracycline (n = 4, 16%), and cephapirin (n = 3, 12%). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20% of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84%) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80%) and E.coli (n = 10, 40%). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8%). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.  相似文献   

9.
Waste milk feeding is a common practice in dairy operations. Regardless of the benefits of this practice to the dairy farmers, concerns from the potential dissemination of antimicrobial-resistant bacteria through the gut and subsequent shedding by calves into the environment are increasing. In this study, we employed Monte Carlo simulation to assess the risk of shedding extended-spectrum cephalosporin-resistant Escherichia coli (ESC-R E. coli) caused by waste milk feeding in pre-weaned calves using an exponential dose-response model fit to data for E. coli O157:H7 in cattle. Data from pertinent studies were included in our model to predict the risk of shedding. The median (5th and 95th percentiles) for the daily risk of shedding ESC-R E. coli by calves fed only contaminated waste milk was predicted to be 2.9 × 10?3 (2.1 × 10?3, 3.7 × 10?3), representing a median daily risk of 29 out of 10,000 calves shedding ESC-R E. coli due to exclusive feeding of waste milk containing ESC-R E. coli. This median value was reduced by 94% when accounting for the proportion of waste milk that does not contain ESC-R E. coli. The overall risk of shedding ESC-R E. coli through the pre-weaning period for farms that feed waste milk to calves was 5.7 × 10?3 (2.4 × 10?3, 1.1 × 10?2), representing 57 out of 10,000 calves. When accounting for the proportion of farms that do not feed waste milk, the pre-weaning period risk was reduced by 23%. By varying the prevalence of ESC-R E. coli in waste milk using values of 3, 1.5, and 1%, the daily risk of shedding decreased by factors of 50, 65, and 82%, respectively, which supports the reduction of contamination or discontinuation of feeding waste milk containing ESC-R E. coli as major mitigation measures to reduce the risk of shedding caused by ingestion of resistant bacteria. It is anticipated that the effects of antimicrobial residues in waste milk, which was not considered herein due to lack of data, would further increase risks. Although waste milk feeding to calves may be economically beneficial to the dairy farmers, there exists the risk of dissemination of ESC-resistant bacteria into the environment.  相似文献   

10.
《Journal of dairy science》2023,106(2):1206-1217
Automated milk feeders (AMF) are an attractive option for producers interested in adopting practices that offer greater behavioral freedom for calves and can potentially improve labor management. These feeders give farmers the opportunity to have a more flexible labor schedule and more efficiently feed group-housed calves. However, housing calves in group systems can pose challenges for monitoring calf health on an individual basis, potentially leading to increased morbidity and mortality. Feeding behavior recorded by AMF software could potentially be used as an indicator of disease. Therefore, the objective of this observational study was to investigate the association between feeding behaviors and disease in preweaning group-housed dairy calves fed with AMF. The study was conducted at a dairy farm located in the Upper Midwest United States and included a final data set of 599 Holstein heifer calves. The farm was visited on a weekly basis from May 2018, to May 2019, when calves were visually health scored and AMF data were collected. Calf health scores included calf attitude, ear position, ocular discharge, nasal discharge, hide dirtiness, cough score, and rectal temperatures. Generalized additive mixed models (GAMM) were used to identify associations between feeding behavior and disease. The final quasibinomial GAMM included the fixed (main and interactions) effects of feeding behavior at calf visit-level including milk intake (mL/d), drinking speed (mL/min), visit duration (min), rewarded (with milk being offered) and unrewarded (without milk) visits (number per day), and interval between visits (min), as well as the random effects of calf age in regard to their relationship with calf health status. Total milk intake (mL/d), drinking speed (mL/min), interval between visits (min) to the AMF, calf age (d), and rewarded visits were significantly associated with dairy calf health status. These results indicate that as total milk intake and drinking speed increased, the risk of calves being sick decreased. In contrast, as the interval between visits and age increased, the risk of calves being sick also increased. This study suggests that AMF data may be a useful screening tool for detecting disease in dairy calves. In addition, GAMM were shown to be a simple and flexible approach to modeling calf health status, as they can cope with non-normal data distribution of the response variable, capture nonlinear relationships between explanatory and response variables and accommodate random effects.  相似文献   

11.
Dairy calves are commonly fed milk from cows treated with antibiotics. The concentration of beta-lactam antibiotic residues found in milk from treated cows was used to determine the range of concentrations of penicillin used in a dose-regulated experiment. Thirty-one Holstein calves were randomly assigned to milk with penicillin G added at concentrations of 0, 6.25, 12.5, 25, and 50 microl/kg. Fecal swabs were taken from each calf twice weekly. Resistance to penicillin was tested by measuring the zone of inhibition in bacterial growth around a disk impregnated with the antibiotic. Inhibition was greatest for bacteria from calves fed milk with no penicillin (2.89 +/- 0.14 mm), and declined as the penicillin dose provided in the milk increased (to a low of 0.70 +/- 0.10 for the 50 microl/kg treatment group). In conclusion, resistance of gut bacteria to antibiotics increases with increasing concentrations of penicillin in the milk fed to dairy calves.  相似文献   

12.
Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf in this trial  相似文献   

13.
We investigated the effects of increasing dietary protein and energy on concentrations of selected blood metabolites and hormones in Holstein heifers. Twenty-four heifers were fed 1 of 4 milk replacer (MR) diets for 9 wk (n = 6/diet): control [20% crude protein (CP), 21% fat MR fed at 441 g of dry matter (DM)/d], HPLF (28% CP, 20% fat MR fed at 951 g of DM/d), HPHF (27% CP, 28% fat MR fed at 951 g of DM/d), and HPHF+ (27% CP, 28% fat MR fed at 1,431 g of DM/d). Heifers were fed twice daily; water and starter (20% CP, 1.43% fat) were offered free choice and starter orts recorded daily. Serum and plasma aliquots from blood samples collected twice weekly after a 12-h fast were analyzed for insulin-like growth factor (IGF)-I, IGF-binding proteins (IGFBP), growth hormone (GH), insulin, glucose, nonesterified fatty acids, triglyceride, and plasma urea nitrogen concentrations. Only plasma glucose, IGFBP-2, and IGFBP-3 were affected by diet. Dietary treatment differences were only noted when the control was compared with the average of the other 3 diets. The addition of fat to the MR (HPLF vs. HPHF) and increased volume of MR (HPHF vs. HPHF+) had no effect on plasma glucose concentration or relative abundance of IGFBP-2 or IGFBP-3. Heifers fed the control diet had less glucose, greater IGFBP-2, and less IGFBP-3 than the average of the other 3 diets. There was a diet by week interaction for IGF-I. Serum IGF-I concentration in control heifers varied in a quadratic manner with a nadir (20 ± 4 ng/mL) at wk 4, whereas IGF-I increased linearly in heifers on other diets. Both insulin and triglyceride changed over time in a complex pattern (significant linear and quadratic contrast effects). The greatest concentrations were measured at wk 0.5 with nadirs at wk 6 for both insulin and triglyceride. Serum GH concentration decreased in a linear manner from wk 0.5 to wk 9 in all heifers. Relative abundance of IGFBP-2 was quadratic over time with the greatest amount of IGFBP-2 observed at wk 5. With the exception of glucose, IGF-I, IGFBP-2, and IGFBP-3, the blood variables measured were not influenced by treatment. The IGF-I -GH-IGFBP axis requires further study in heifers to deduce effects of nutrition on hypothalamic regulation of metabolism. We expected to see more treatment differences in concentrations of metabolites involved with protein and fat metabolism. It is likely that the diets used in this study were not diverse enough in composition to elicit such changes or that the efficiency of use of absorbed protein and fat was not different in these animals.  相似文献   

14.
Forty-five Holstein calves were fed milk replacers containing either antibiotics [MRA (oxytetracycline at 138 mg/kg and neomycin at 276 mg/kg), n = 22)] or Enteroguard [MRE, a blend of fructooligosaccharides, allicin, and gut-active microbes at (129 mg/kg, n = 23)] from birth to 5 wk of age to compare effects on average daily gain and on incidence of scours. Performance was evaluated by measuring weight gain, feed efficiency, and fecal scores. The overall body weight gains and severity of scours were not different between treatments, nor were there differences in starter intake or mean body weight gain. During wk 2, the average gain of calves fed MRA was less than that of calves fed MRE (0.07 vs. 0.09 kg/d, P = 0.09), and greater during wk 5 (0.62 vs. 0.51 kg/d, P < 0.01); however, total gain for calves fed MRE was not different from calves fed MRA. Likewise, average feed efficiencies (gain/dry matter intake) were not different. Severity of scours, as measured by fecal scores, and concentrations of serum proteins, an indirect measure of immunoglobulins, were similar for calves fed MRA and MRE. The results suggest that antibiotics in milk replacers can be replaced with compounds such as fructooligosaccharides, probiotics, and allicin to obtain similar calf performance.  相似文献   

15.
Studies have shown that calves fed milk replacers (MR) with crude protein (CP) concentrations greater than 20%, as typically found in conventional MR, have higher dry matter intakes (DMI) and greater average daily gains (ADG) but consume less starter, which can lead to stress during weaning and reduced rumen development. The greater amount of CP being fed to preweaned calves may alter their nitrogen (N) balance, and excess N may be excreted in the urine. The objective of this study was to determine N utilization in preweaned calves fed diets varying in the amount of CP and MR fed. This study used 24 newborn dairy heifer calves blocked by birth and randomly assigned to 1 of 3 treatments: (1) 446 g dry matter (DM) of a conventional MR (CON; 20% CP, 20% fat), (2) 669 g DM of a moderately high protein MR (moderate; MOD; 26% CP, 18% fat), or (3) 892 g DM of a moderately high protein MR (aggressive; AGG; 26% CP, 18% fat). All calves had ad libitum access to starter and water. Both MR and starter were medicated with decoquinate. During weaning (d 43–49), the morning MR feeding ceased. On d 50, all MR feedings ended; however, starter and water intakes were continuously recorded until d 56. At 5 wk of age, urine was collected using urinary catheters for 3 d and chromium oxide was administered by bolus at 2 g/d for 7 d to estimate N efficiency. Calves fed MOD and AGG had similar starter intakes, feed efficiencies, and ADG, with the combined treatments having reduced starter intakes (258 vs. 537 g/d), greater ADG (674 vs. 422 g/d), and improved feed efficiency (0.57 vs. 0.45 gain:feed) compared with CON calves preweaning. However, DMI and water intake were similar across all treatments. Results from the N utilization phase showed that MOD and AGG treatments had similar but lower N efficiency compared with CON calves (45.5 vs. 52.7%). This could be due to MOD- and AGG-fed calves having greater urine volume and thereby, greater combined urine N output compared with CON calves (17.6 vs. 12.1 g/d). In summary, feeding >0.66 kg (DM) from a 26% CP MR increased ADG and improved feed efficiency during the preweaning period but reduced starter intake and lowered N efficiency.  相似文献   

16.
Prophylactic and therapeutic antimicrobial use in food animals is questioned because of the potential for development of resistant bacteria and future inability to use some antimicrobials for human or animal disease. The objectives of this study were to determine the effect of raising preweaned dairy calves without antimicrobials in the milk and minimizing therapeutic antimicrobial treatment on morbidity, mortality, weight gain, and treatment costs. Newborn calves (n = 358) were allocated to 1 of 4 groups, housed outdoors in individual hutches, and monitored for 28 d. Calves in the conventional therapy (CT) group were treated as per dairy protocol with sulfamethoxazole/trimethoprim, spectinomycin, penicillin, and bismuth-pectin for diarrhea. The targeted therapy (TT) group included bismuth-pectin for diarrhea and antimicrobial treatment only in cases of fever or depressed attitude. Within CT and TT groups, calves were equally assigned to receive neomycin and tetracycline in their milk for the first 2 wk of life (AB-milk) or no antimicrobials (NoAB-milk). Daily health evaluations included fecal consistency, respiratory disease, attitude, and hydration status as well as milk and grain consumption. A negative binomial model evaluated the total number of days with diarrhea days in each group. General linear models were used to assess average daily weight gain and grain consumption. Conventionally treated calves had 70% more days with diarrhea than TT calves, and AB-milk calves had 31% more days with diarrhea compared with NoAB-milk calves. The TT calves tended to have a higher average daily gain by 28 d and consumed more grain compared with CT calves. If antimicrobials were used only for diarrhea cases with fever, inappetence, or depression and no in-milk antimicrobials were used, a $10 per calf savings could be realized. Targeting antimicrobial therapy of calf diarrhea cases is prudent not only to save the drugs for future use but also to prevent the potential for antibiotic-associated diarrhea and reduce calf-rearing costs.  相似文献   

17.
Respiratory disease and diarrhea are the 2 most common diseases that result in the use of antimicrobial drugs in preweaned calves. Because the use of drugs in food animals, including dairy calves, has the potential for generating cross-resistance to drugs used in human medicine, it is vital to propose farm practices that foster the judicious use of antimicrobials while assuring animal health and productivity. The objective of this study was to use dairy farm calf treatment records to identify antimicrobial drug treatments in calves and to evaluate their effects on the prevalence of antimicrobial-resistant Escherichia coli from rectal swabs of preweaned dairy calves. Eight farms from central New York participated in the study, 3 farms using individual pen housing management and 5 farms using group pen housing management. Eligible study farms could not add antimicrobial drugs to the milk fed to preweaned calves and were required to have farm records documenting antimicrobial drug treatment of calves from birth to weaning. Three fecal E. coli isolates per calf were tested for susceptibility to 12 antimicrobial drugs using a Kirby-Bauer disk diffusion assay. A total of 473 calves were sampled, from which 1,423 commensal E. coli isolates were tested. Of the 9 antimicrobial drugs used on study farms, only enrofloxacin was significantly associated with reduced antimicrobial susceptibility of E. coli isolates, although treatment with ceftiofur was associated with reduced susceptibility to ceftriaxone. The median numbers of days from treatment with ceftiofur and enrofloxacin to rectal swab sampling of calves were 16 d (range: 1–39) and 12 d (range: 6–44), respectively. At the isolate level, treatment with enrofloxacin resulted in odds ratios of 2 [95% confidence interval (CI): 1–4] and 3 (95% CI: 2–6), respectively, for isolation of nonsusceptible E. coli to nalidixic acid and ciprofloxacin compared with calves not treated with enrofloxacin. Treatment with ceftiofur resulted in an odds ratio of 3 (95% CI: 0.9–12) for isolation of nonsusceptible E. coli to ceftriaxone compared with calves not treated with ceftiofur. Treatment with enrofloxacin resulted in selection of isolates that presented phenotypic resistance to both ciprofloxacin and ceftriaxone. Treatment with ceftiofur resulted in a higher prevalence of isolates resistant to ≥3 antimicrobial drugs (97%) compared with no treatment with ceftiofur (73%). These findings reinforce the necessity for continued implementation of practices at the dairy farm that support the sustainable and judicious use of antimicrobial drugs in dairy calves.  相似文献   

18.
目的了解原料乳和乳房炎奶样中大肠杆菌的污染情况及菌株耐药性。方法通过选择培养和聚合酶链式反应方法对2个奶牛场采集到的206份奶样(129份乳房炎牛奶样品和77份原料乳样品)进行大肠杆菌的分离鉴定,采用药敏纸片法对分离株进行25种常用抗生素耐药特征检测。结果 206份奶样中大肠杆菌的污染率为8.3%(17/206),其中乳房炎和原料乳样品的污染率分别为7.0%(9/129)和10.4%(8/77)。从17份污染的样本中共分离到34株大肠杆菌,其中乳房炎奶样分离到18株,原料乳分离到16株。药敏结果显示,奶样分离株对氨苄西林耐药最为普遍(44.1%,15/34),对头孢类抗生素也有较强耐药性[如头孢唑啉和头孢噻吩(20.6%,7/34)]。最常见的耐药谱为AMP(11.8%,4/34),AMP-CXM-CFZ-KF-F和AMP-CXM-CFZ-CTX-PRLCRO-KF(5.9%,2/34)。此外,A,B奶牛场分离株的耐药率(P=0.007)和耐药谱总体差异显著(P=0.043)。结论奶样中存在大肠杆菌的污染情况,菌株普遍对氨苄西林和头孢类抗生素耐药且部分对非兽用抗生素也有一定的耐药性。因此,为避免耐药大肠杆菌对人类,尤其是抵抗力较弱的老年人和婴幼儿的感染和中毒,除应加强对奶源地的管理外,还需防止抗生素的滥用。  相似文献   

19.
Increasing concerns about antimicrobial resistance have led to the development and implementation of alternatives to antimicrobial use in animal production. The objective of this clinical trial was to determine the effect of colostrum supplementation of the milk replacer ration on morbidity, mortality, feed intake, and weight gain of preweaned calves. Ninety 1-d-old calves on each of 3 commercial calf ranches were randomly allocated to 1 of 3 groups. Treatment-group calves received 10 g of supplemental immunoglobulin G (IgG) in the form of 70 g of colostrum powder in the milk replacer twice daily for 14 d. The placebo-group calves received a nutritionally equivalent supplement lacking IgG in the milk replacer twice daily for 14 d. Control calves received milk replacer without supplements twice daily. Calves were housed in individual hutches and were weighed on d 1, 28, and 60. Serum was collected on d 2 for serum IgG determination. Daily health evaluations for the first 28 d of life were performed by study personnel blinded to treatment group assignment. Observed illness was treated based on health assessment, rectal temperature, and specific calf ranch protocols. Feed consumption (milk and grain) was recorded. Calves receiving supplemental colostrum had less diarrhea and received fewer antimicrobial treatments than control and placebo calves. The results indicated that calf diarrhea was associated with low serum IgG levels and low-weight calves. Grain consumption and weight gain over the first 28 d of life were significantly greater in colostrum-supplemented calves compared with control calves. No differences in mortality or respiratory disease incidence among groups were detected. Supplemental colostrum during the first 2 wk of life can reduce diarrheal disease in preweaned calves on calf ranches and thereby reduce the amount of antimicrobial treatments needed.  相似文献   

20.
Bull and heifer calves (n = 81) from genetic lines of Holstein cows that differed by more than 4000 kg milk/305-d lactation were used to determine effects of selection for milk yield on growth hormone (GH) response to a GH releasing factor (GRF) analog. Calves received GRF (4 microg/100 kg BW) on 10, 56, 140, 196, 252, and 364 +/- 3 d of age. Jugular blood samples (n = 15) were obtained from -30 to 120 min relative to GRF administration. Area under the GH response curve (0 to 60 min, AUC60) was quantified after subtracting mean prechallenge GH concentrations. Data were analyzed for effects of line, age, gender, and their interactions with PROC MIXED of SAS for repeated measures and incorporated the spatial power law for unequally spaced data with age as the repeated effect. Means were considered different when P < 0.05. Prechallenge GH concentrations did not differ between lines, were greater in bulls than heifers (4.6 vs. 3.7 ng/ml), and decreased with age. The AUC60 decreased with age but did not differ between lines. Heifers responded more to GRF than bulls (1550 vs. 1336 ng x min/ml). Peak GH concentration decreased with age and was less in bulls than heifers (54.7 vs. 62.1 ng/ml) but did not differ between lines. Although plasma GH has been identified as an inheritable trait, we conclude the GH variables measured in this study were not useful in predicting genetic merit of calves from these substantially different lines of cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号