首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The retention of polystyrene and silica colloids that have been chemically modified is measured in several aqueous carrier liquids. Retention levels are governed by particle size and composition but are also sensitive to subtle changes in the carrier. Size-based selectivities are higher in aqueous carriers compared to acetonitrile. In aqueous carriers, retention varies dramatically with the nature of the additive, and for a given additive, retention increases with ionic strength, regardless of modifications to the particle surface. The role played by electrostatic effects in retention is studied by varying the ionic strength of the carrier, estimating electrical double layers, determining particle-wall interaction parameters, and calculating the coefficients of mass diffusion and thermal diffusion. Although electrostatic phenomena can affect mass diffusion and particle-wall interactions in carriers of low ionic strength (<10(-3) M), such effects are not great enough to explain the dependence of retention on ionic strength. Therefore, thermal diffusion must be affected directly. Thermal diffusion is found to increase with pH, and at a given pH with the surface tension of the suspended particle. Finally, while the addition of the surfactant FL-70 generally decreases retention, greater retention levels can ultimately be achieved with FL-70 because larger temperature gradients can be used without particle adsorption to the accumulation wall.  相似文献   

2.
A microfabricated thermal field-flow fractionation system   总被引:2,自引:0,他引:2  
A microscale thermal field-flow fractionation (micro-TFFF) system has been designed, fabricated, and characterized. Motivation for miniaturization of TFFF systems was established by examining the geometrical scaling of the fundamental TFFF theory. Miniaturization of conventional macroscale TFFF systems was made possible through utilization of micromachining technologies. Fabrication of the micro-TFFF system was discussed in detail. The micro-TFFF system was characterized for plate height versus flow rate, single-component polystyrene retention, and multicomponent polystyrene separations. Retention, thermal diffusion coefficients, and maximum diameter-based selectivity values were extracted from separation data and found comparable with macroscale TFFF system results. Retention values ranged from 0.33 to 0.46. Thermal diffusion coefficients were between 3.0 x 10(-8) and 5.4 x 10(-8) cm2/s x K. The maximum diameter-based selectivity was 1.40.  相似文献   

3.
4.
Maskos M  Schupp W 《Analytical chemistry》2003,75(22):6105-6108
A new technique for the separation and characterization of particles and polymers based on asymmetrical flow field-flow fractionation was developed. The new circular asymmetrical flow field-flow fractionation instrument (CAFFFE) resembles a quasi-parallel arrangement of 12 individual flow channels. As compared to the classical asymmetrical flow field-flow fractionation (AF-FFF), which can be used so far only for analytical separation and characterization of particles and polymers, the CAFFFE allows the introduction of higher amounts of sample into the channel in a single run so that semipreparative to preparative separation becomes possible. This was demonstrated by the separation of polymer latex standards.  相似文献   

5.
Thermal field-flow fractionation (ThFFF) of various types of submicrometer silica particles in aqueous media is experimentally investigated under an extended range of medium ionic strengths with and without the presence of surfactant. The experiments were designed to examine the applicability to submicrometer particles of the theory of charged nanoparticles thermodiffusion recently proposed by Parola and Piazza (Parola, A.; Piazza, R. Eur. Phys. J. E. 2004, 15, 255-263). In particular, the expression for the calibration function in terms of particle radius and channel temperature is derived and experimentally verified. Moreover, retention is expected to be dependent on particle surface potential and charge, and on ionic strength. These dependences are experimentally investigated and the pertinent relationships and correlations derived. The effect of heavy metal adsorption on the silica surface was investigated, and significant ThFFF retention changes were measured. Independent measurements of the zeta potential (zeta-potential) indicated that a decrease in the surface charge of a silica particle is a consequence of heavy metal adsorption, which is, in turn, correlated to the observed decrease in ThFFF retention.  相似文献   

6.
In this paper, a new approach for determination of thermal diffusion coefficient D(T) values using thermal field-flow fractionation retention data and Mark-Houwink constants is reported. The method utilizes the availability of Mark-Houwink constants from the literature together with thermal field-flow fractionation retention data to calculate D(T) values for both narrowly and broadly dispersed polymeric samples. The proposed method was tested with thermal field-flow fractionation data from a number of published papers. In general, D(T) results obtained from the new approach agree well with those reported from the literature. Since Mark-Houwink constants have been extensively tabulated, the new method can be used to generate a broad database of D(T) values for use in the characterization of polymers and in studies of the thermal diffusion phenomenon.  相似文献   

7.
Gravitational field-flow fractionation (GrFFF) is a useful technique for fast separation of micrometer-sized particles. Different sized particles are carried at different velocities by a flow of fluid along an unobstructed thin channel, resulting in a size-based separation. They are confined to thin focused layers in the channel thickness where force due to gravity is exactly opposed by hydrodynamic lift forces (HLF). It has been reported that the HLF are a function of various parameters including the flow rate (or shear rate), the size of the particles, and the density and viscosity of the liquid. The dependence of HLF on these parameters offers a means of altering the equilibrium transverse positions of the particles in GrFFF, and hence their elution times. In this study, the effect of the viscosity of the carrier fluid on the elution behavior (retention, zone broadening, and resolution) of micrometer-sized particles in GrFFF was investigated using polystyrene (PS) latex beads as model particles. In order to change the carrier liquid viscosity without affecting its density, various amounts of (hydroxypropyl) methyl cellulose (HPMC) were added to the aqueous carrier liquid. It was found that particles migrate at faster rates as the carrier viscosity is increased, which confirms the dependence of HLF on viscosity. At the same time, particle size selectivity decreased but peak shape and symmetry for the more strongly retained particles improved. As a result, separation was improved in terms of both the separation time and resolution with increase of carrier viscosity. A theoretical model for plate height in GrFFF is also presented, and its predictions are compared to experimentally measured values.  相似文献   

8.
Kim WS  Park YH  Shin JY  Lee DW  Lee S 《Analytical chemistry》1999,71(15):3265-3272
The applicability of field-flow fractionation (FFF) was investigated for determination of size and size distribution of diesel soot particles. A sample preparation procedure was developed for FFF analysis where soot particles are recovered from filters in an ethanol bath sonicator, and then they are dispersed in water containing 0.05% Triton X-100 and 0.02% NaN(3). Mean diameters obtained from sedimentation FFF (SdFFF) and flow FFF (FlFFF) agree well with each other and are in good agreement with diameters obtained from photon correlation spectroscopy (PCS) and scanning electron microscopy. The relative error was less than 11%. Data show diesel soot particles have broad size distributions ranging from 0.05 up to ~0.5 μm with the mean diameters between 0.1 and 0.2 μm. The use of FlFFF is more convenient as FlFFF fractograms can be converted directly to size distributions, while the conversion of the SdFFF fractogram needs the particle density information. The density needed for SdFFF analysis was obtained by combining the SdFFF retention data with the PCS size data. For samples whose density is known, SdFFF may be more useful as SdFFF provides a wider dynamic range than FlFFF under constant field strength.  相似文献   

9.
In this work, the analytical potential of cyclical electrical field flow fractionation (CyElFFF) for nanomaterial and colloidal particle characterization has been experimentally demonstrated. Different operating parameters were investigated in order to evaluate their effect on the mechanisms of retention and fractionation power of CyElFFF. The voltage and frequency of the oscillating electrical field appeared to be the most influential parameters controlling the separation mode. Mobile phase flow rate was also found to be a key parameter controlling the fractionation efficiency. This work allowed the definition of operating conditions such that a reliable CyElFFF analysis could be performed on different nanoparticles on the basis of the direct comparison of their theoretical and experimental behavior. The results show that this technique in optimized conditions is a powerful tool for electrophoretic mobility based separation and characterization of various nanoparticles.  相似文献   

10.
Electrical field-flow fractionation (ElFFF) results for a series of polystyrene latex beads are presented. To first approximation, retention behavior can be related to conventional FFF theory, modified to account for a particle-wall repulsion effect. Size selectivity and column efficiency were exceptionally high, again approaching the upper limit predicted by theory. For the channel described in the present study, application of small voltages (typically less than 2 V) across the thin (131 microm) separation space defined by a Teflon spacer generates nominal field strengths of 10(4) V m(-1). However, electrode polarization reduces the effective field across the bulk of the channel to approximately 3% of the nominal value in the system studied. The magnitude of the applied field was calibrated by using standard latex beads of known size and mobility. Perturbations to retention behavior, such as overloading, were investigated. It was found that ideal separations occur at very dilute concentrations of the sample plug and that working in systems of very low ionic strength, the double-layer thickness adds significantly to the effective size of a particle. Steric inversion was observed at a particle size of approximately 0.4 microm under the conditions employed.  相似文献   

11.
12.
The performance of lift-hyperlayer asymmetrical flow field-flow fractionation using rapid elution conditions was tested through the separation of standard polystyrene latex particles of diameters from 2 to 20 microm. Optimization of flowrates was studied not only in order to obtain efficient and rapid separation, but also to work under conditions of various shape and steepness of the axial flow velocity gradient. Using extreme flow conditions, the five widely spaced particle sizes, 20.5-, 15.0-, 9.7-, 5.0-, and 2.0-microm diameter, could be resolved in 6 min, whereas for the narrower size range of 20.5-5.0 microm, 1 min was enough. The size selectivity in the size range 9.7-2.0 microm was studied as a function of flowrates and particle size and was found to be constant. A particle trapping device made it possible to separate particles of sizes > 10 microm, which has previously proven to be difficult in asymmetrical channels.  相似文献   

13.
Field flow fractionation (FFF) technique is used to determine the size of water-soluble Au, ZnS, ZnS-Mn2+ nanoparticles, and CdSe, CdSe-DNA quantum dots (QDs). The results of the FFF measurements are compared with the particle size analysis using conventional techniques like scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS) studies. Water-soluble gold nanoparticles (AuNPs) stabilized by mercaptosuccinic acid (MSA) as the ligand when analyzed by the SEM and DLS showed evidence of extensive aggregation, preventing an accurate determination of the average particle size. The TEM analyses without staining offered a facile measurement of the nanoparticle core but average particle size determination required analysis of the TEM image using image analysis software. On the other hand the FFF is seemingly a convenient and easy method for the determination of the average particle size of the AuNPs. In case of the ZnS and ZnS-Mn2+ nanoparticles with mercaptopropionic acid (MPA) as the capping agent severe aggregation prevented accurate estimation of particle sizes even by the high resolution TEM (HRTEM), where as the size determination by the FFF was very facile. Analysis of the CdSe-DNA conjugate by the TEM was difficult as the sample got damaged upon exposure to the electron beam. The FFF cross-flow condition is apparently noninvasive and hence the technique was very effective in characterizing the CdSe-DNA QDs. Furthermore, using this simple technique it was possible to fractionate a sample of the AuNPs. The FFF measurement of water-soluble nanoparticles is an excellent complement to characterization of such particles by the conventional tools.  相似文献   

14.
Qing D  Schimpf ME 《Analytical chemistry》2002,74(11):2478-2485
In the characterization of materials by field-flow fractionation (FFF), the experienced analyst understands the importance of incorporating additives in the carrier liquid that minimize or eliminate interactions between the analyte and accumulation wall, particularly in aqueous systems. However, as FFF is applied to more difficult samples, such as those with high surface energies, it is increasingly difficult to find additives that completely eliminate particle-wall interactions. Furthermore, the analyst may wish to use specific conditions that preserve the high surface energy of particles, to study their interaction with other materials through their behavior in the FFF channel. With this in mind, Williams and co-workers developed a model that quantifies the effect of particle-wall interactions in FFF using an empirically determined interaction parameter. In this work, the model is evaluated for the application of flow FFF in carrier liquids of low ionic strength, where particle-wall interactions are magnified. The retention of particles ranging in size from 64 to 1000 nm is measured using a wide range of field strengths and retention levels. The model is found to be generally valid over the entire range, except for minor discrepancies at lower levels of retention. Although retention levels are dramatically affected by particle-wall interactions, the point of steric inversion (500 nm), where the size-based elution order reverses, is not affected. When particle-wall interactions are not accounted for, they lead to a bias in particle sizes calculated from standard retention theory of up to 70%. The model can also be used to refine the measurement of channel thickness, which is important for the accurate conversion of retention parameters to particle sizes. In this work, for example, errors in channel thickness led to systematic errors on the order of 10% in particle diameter.  相似文献   

15.
Kang D  Moon MH 《Analytical chemistry》2004,76(13):3851-3855
A miniaturized frit inlet asymmetrical flow field-flow fractionation (mFI-AFlFFF) channel has been constructed and tested for the separation of proteins. By scaling down the geometrical channel dimension of a conventional FI-AFlFFF system, flow rate ranges that can be manipulated were decreased to 20-30 microL/min, which reduces the injection amount of sample materials. The end effect contribution to plate height was evaluated by varying the inner diameter of the connection tubing between the injector and the channel inlet at various injection flow rates, and the results showed that the use of silica capillary tubing of the shortest possible distance is essential in reducing the initial band broadening prior to the sample injection to the microscale channel. The capability of the microFI-AFlFFF system was demonstrated with the separation of protein standards, polystyrenesulfonates, and ssDNA strains and for the characterization of replication protein A-ssDNA binding complex regulated by redox status.  相似文献   

16.
17.
Distinctive features of the operation of an internal-combustion engine burning ethanol-containing fuels have been studied. It has been shown that the enrichment of gasoline with ethanol tends to diminish the concentrations of CO and NO in combustion products, with the engine’s fuel efficiency being inevitably degraded due to the lower volumetric heat of combustion of the blend. The experimentally confirmed technique of blocking the growth in the concentration of NO in the combustion products of hydrogen-containing fuels by enrichment of the blend with ethanol has been proposed; the optimum parameters of the three-fuel composition have been established.  相似文献   

18.
Zhu R  Frankema W  Huo Y  Kok WT 《Analytical chemistry》2005,77(14):4581-4586
Ceramic hollow fibers have been used as separation channels for flow field-flow fractionation. The fibers were made of alpha-alumina, with a gamma-alumina layer on the inside wall acting as a semipermeable (ultrafiltration) membrane. The fibers and the separation system were tested by determining the diffusion coefficients of a series of standard proteins under various experimental conditions. Even for the smallest protein studied, a complete recovery from the fiber was obtained. A single fiber could be used for several months without problems such as leakage or fouling. The precision of the diffusion coefficient measurements was in the order of 5-10%. A good agreement with literature data was found. Programming of the cross-flow, with a time-delayed exponential decay program, was applied to extend the accessible size range for the sample components. With flow programming, the observed retention times increased linearly with the logarithm of the molar mass of proteins and aggregates, as predicted by theory. Heat-induced aggregation of beta-lactoglobulin (beta-LG) in aqueous solution was studied with the system. Upon heating, not only the extent of aggregation but also the size of the beta-LG aggregates was found to increase with the original concentration of beta-LG in solution and with the heating time. After heating in the presence of salt, very large aggregates were formed, with molar masses over 100 million. A multiangle light scattering detector was used to estimate molar masses and sizes of the protein aggregates. From the relation between the apparent diffusion coefficients and the molar masses of the aggregates, as well as from the ratio of the rms (scattering) and the hydrodyamic radii, it was concluded that the larger beta-LG aggregates behave as flexible chains in solution.  相似文献   

19.
Dielectrophoretic field-flow fractionation (dFFF) was applied as a contact-free way to sense changes in the plasma membrane capacitances and conductivities of cultured human HL-60 cells in response to toxicant exposure. A micropatterned electrode imposed electric forces on cells in suspension in a parabolic flow profile as they moved through a thin chamber. Relative changes in the dFFF peak elution time, reflecting changes in cell membrane area and ion permeability, were measured as indices of response during the first 150 min of exposure to eight toxicants having different single or mixed modes of action (acrylonitrile, actinomycin D, carbon tetrachloride, endosulfan, N-nitroso- N-methylurea (NMU), paraquat dichloride, puromycin, and styrene oxide). The dFFF method was compared with the cell viability assay for all toxicants and with the mitochondrial potentiometric dye assay or DNA alkaline comet assay according to the mode of action of the specific agents. Except for low doses of nucleic acid-targeting agents (actinomycin D and NMU), the dFFF method detected all toxicants more sensitively than other assays, in some cases up to 10 (5) times more sensitively than the viability approach. The results suggest the dFFF method merits additional study for possible applicability in toxicology.  相似文献   

20.
Thermal field-flow fractionation (ThFFF) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have been coupled to yield a powerful combination of techniques for polymer analysis. Thermal FFF's high molecular weight (MW) selectivity and sensitivity to chemical composition are used to separate polydisperse polymers and polymer mixtures into the narrow polydispersity and homogeneous chemical composition fractions essential for MALDI-TOFMS analyses. On the other hand, MALDI-TOFMS's ability to directly measure molecular weight alleviates the need for polymer standards for ThFFF. In this first-time coupling of ThFFF and MALDI-TOFMS, compatibility issues were addressed and optimum conditions and procedures were identified and developed to maximize the capabilities of the combined technique. Depending on the polymer MW and the method of MALDI sample deposition, fractions from 1-10 ThFFF runs were combined for MALDI-TOFMS analysis. Binary solvents were used to enhance ThFFF retention and resolution of low-MW (<15-kDa) polymers, and methods were developed to allow routine MALDI-TOFMS analyses of polystyrene polymers up to 575 kDa. Overall, the MW compatibility of the two techniques was extended from several kilodaltons to several hundred kilodaltons. Polymer fractions were collected after separation by ThFFF and analyzed either by MALDI-TOFMS or reinjection into the ThFFF system. Good agreement was observed between the MW distribution data obtained by MALDI-TOFMS and ThFFF. The application of ThFFF/MALDI-TOFMS to polydisperse polymers and polymer mixtures was demonstrated. This combined technique was also shown to be a viable means for preparing standards from the original polymer sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号