首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
紧凑型回旋加速器中一种等时性磁场垫补算法   总被引:1,自引:1,他引:0  
结合中国原子能科学研究院100 MeV回旋加速器中心区实验台架主磁铁镶条的垫补,发展了一种改进的多元线性回归磁场垫补算法.基于磁场测量系统实测的实验台架中心平面上的磁场分布以及有限元软件模拟数值计算的磁场,实现了这种改进的多元线性回归磁场垫补算法.该算法可适用于紧凑型回旋加速器中等时性磁场的垫补,以使所垫补的磁场满足回旋加速器束流动力学设计的要求.  相似文献   

2.
在紧凑型、小磁极间隙回旋加速器中,对等时性磁场要求较高,如中国原子能科学研究院正在设计建造的100MeV紧凑型强流回旋加速器。因其磁极间隙小,故此对于加速器运行过程中温升、电磁力等因素引起的磁极形变相当敏感,此时需在线调节等时性磁场,以保证粒子的正常加速。  相似文献   

3.
紧凑型的回旋加速器的磁场分布范围跨度较大,且对磁场测量的精度要求较高,磁场的测量误差直接影响到后续主磁铁的镶条垫补。磁场测量系统主要用于主磁铁中心平面上磁场分布的测量,对主磁场的测量精度及测量点相对位置精度要求极高,磁场偏离理想场的微小误差对粒子束流的运动有相当大的影响。磁场测量点的选取采用极坐标,最后给出磁场值的极坐标点分布结果。  相似文献   

4.
100 MeV紧凑型回旋加速器主磁铁的几何结构十分复杂,但为了形成加速器束流动力学所要求的磁场分布,本文对初步设计的磁铁进行必要的简化。综合采用各种适当的三维有限元网格剖分技术,对该磁铁的磁场进行数值分析,计算精度满足加速器物理设计的要求。  相似文献   

5.
在回旋加速器中心区的设计中,轴向运动关心的主要问题和径向运动非常不同。这基本上源于在回旋加速器中心处轴向聚焦频率几乎为零的事实,然而径向振荡频率值约为1。回旋加速器中,在起始的几圈内等时性磁场提供的轴向聚焦接近于0,为加强磁场聚焦在等时场上设计一小的凸起磁场,可提供正的磁场梯度即轴向聚焦,属于弱聚焦,且该磁场带来的另一不利的效应是造成滑相。  相似文献   

6.
主磁铁举升系统是100MeV回旋加速器的重要设备之一,在100MeV回旋加速器的安装、磁场测量、真空检漏、束流调试、检修维护等过程中,举升系统具有重要作用。目前国际上的大型紧’凑型回旋加速器主要采用两种类型的举升装置,一类是采用螺旋丝杠升降装置,如加拿大TRIUMF、意大利LNS、瑞士PSI的回旋加速器等,另一类是采用液压举升装置,如比利时IBA的235MeV质子回旋加速器。CYCIAE一100的举升系统参数为:设计举升重量180t,举升高度1500mm。  相似文献   

7.
<正>为满足恶性肿瘤、心脑血管等医疗行业重大疾病早期诊断的需求,回旋加速器研究设计中心正研制一台用于硼中子治疗(BNCT)的14 MeV医用回旋加速器。加速器主磁铁采用紧凑型结构,选择4叶片直边扇形磁极,引出束流强度为1mA,针对BNCT医用小型回旋加速器结构特点,采用一套全自动化的磁场测量系统对其进行磁场测量与垫补。  相似文献   

8.
正磁场测量与垫补系统是230 MeV超导质子回旋加速器主磁铁系统的子系统之一。目前,230 MeV超导质子回旋加速器主磁铁、线圈、配套电源均已完成加工,磁场测量工作即将展开。磁能量法是加速器中常用的磁场测量方法。磁能量法原理简单,但误差来源较丰富,需要对感应线圈探头的面积进行标定。利用回旋加速器研究设计中心临时厂房的标准C型二极铁提供高均匀度磁场,校准时利用NMR测量探头进行磁场标定。通过多次校准,经计算后取平均值可得到感应线圈的面积与厂家所  相似文献   

9.
正等时性是衡量一台回旋加速器的关键指标,需通过磁场测量评估。230 MeV回旋加速器要求测量的磁场范围为径向0~85cm、角向0°~360°的中心平面,最高磁场强度约为4.0T,要求的磁场测量精度为5×10~(-5)。计划采用感应线圈探头磁能量法进行磁场测量。目前,230 MeV超导回旋加速器磁场测量系统的主要进展如下。1完成磁场测量机械装置的研制测磁仪机械装置用于支撑测量设备和其他硬件,如图1所示。装置实现NMR探头伸入中心平面,获  相似文献   

10.
CYCIAE-100是一台紧凑式回旋加速器,加速负氢粒子束,引出方式为双向剥离引出。在回旋加速器内部的加速平衡轨道上,由于磁场的对称性,束流是消色差的。加速的H^-束流经过剥离膜剥离转换成质子后,将沿着引出轨道而被引出。由于磁场的非对称性和边缘场的存在,将会给引出的质子束流引入色散,造成水平的横向发射度增长。  相似文献   

11.
中国原子能科学研究院正在设计研究的100MeV强流质子回旋加速器中真空室内的残余气体和磁场中的洛仑兹剥离将导致部分负氢离子束流损失,并在真空室内产生辐射剂量。本工作采用蒙特卡罗方法模拟计算该加速器运行时真空室外壁上沿圆周方向的辐射剂量分布,计算得出其最大值约为143Sv/h。同时,研究了在加速器停机后真空室内部的剩余辐射剂量场分布及其随时间的衰减规律。   相似文献   

12.
小回旋加速器中磁场一,二,三次谐波影响的研究   总被引:1,自引:1,他引:0  
卢相顺  陈茂柏 《核技术》1996,19(12):721-726
研究了小回旋加速器中磁场一、二、三次谐波对粒子运动的影响,由此得出其所能允许的最大幅值,为磁场的垫补提供理论依据。  相似文献   

13.
在回旋加速器中,如果磁极的镜像对称被破坏,将在加速器的中心平面上产生一水平分量的场Br,在粒子相应轴向共振的作用下,这样的场将使中心粒子的运动偏离中心平面,进而使束流发射度发生变化。在回旋加速器中粒子由于径向磁场作用偏离中心平面运动的方程可表示为:  相似文献   

14.
在CYCIAE-100回旋加速器的整体设计中,满足各种束流动力学要求的磁场分布的实现是最为关键的环节之一。在紧凑型回旋加速器中,磁铁的形变将严重影响中心平面及其附近的磁场分布。导致磁铁变形的主要因素有磁铁自身的重力、电磁力和外界的大气压力。其中对于重力和电磁力引起的磁铁形变,如果变形足够小,可留待磁场测量和垫补阶段处理;如果变形较大,则需在设计阶段对气隙的结构尺寸加以补偿。而对于大气压力引起的磁铁变形,由于磁场测量是在非真空条件下进行,因此需详细分析这样的变形对磁场的影响,为大气下测磁数据的真空校正处理提供依据。总之,主磁铁的结构力学研究对于CYCIAE-100最终磁场达到高的精度有重要意义。  相似文献   

15.
为了研究带电粒子光学系统的光学特性,需要知道系统中磁场的空间分布。实际磁场往往不具有严格的平面对称性质,一些作者曾就这类磁场的空间展开做过不少工作。但他们的工作是在柱坐标系统中进行的,适用于诸如回旋加速器、双向聚焦磁分析器、环形磁β谱仪等一类装置的磁场分析。对于大型同位素电磁分离器(calutron)那样一类装置,其磁场分布需要  相似文献   

16.
加速器引出束流分布一般都是高斯分布,而在很多束流应用中都需要均匀分布的束流,为此目的设计了旋转扫描磁铁。旋转扫描磁铁形成一垂直于束流传输轴向均匀旋转磁场,在该磁场作用下,通过旋转扫描磁铁的束流也会随磁场的旋转而旋转,从而提高束流的均匀度。其旋转过程如图1所示。外两相电流都是相同的直流电,这种情况下所形成的磁场方向不会变化,可用特斯拉计进行测量,其具体结果如图4所示。由图可见,理论计算和实际测量值间的误差小于2.2Gs,精度约1%,该旋转扫描磁铁即将在30MeV回旋加速器的123I束流线上试用,也用于100MeV回旋加速器的质子…  相似文献   

17.
在回旋加速器加速负氢离子的过程中,由于磁场的洛伦兹力剥离以及真空条件引起的束流损失,是制约加速器最终束流强度的关键因素。束流损失除了导致引出流强降低外,在强流情况下更严重的是加速器内部放射性剂量的增加,给机器的运行维修带来困难,同时,损失的束流轰击加速器内部的某些部件,将导致机器的稳定运行问题。对回旋加速器中残留气体引起的束流损失的机理研究,在理论上解决强流负氢回旋加速器中残留气体引起的束流损失问题,从而对回旋加速器的真  相似文献   

18.
回旋加速器的主磁铁是加速器建造中最重要的部件,它代表了回旋加速器的特性。虽然有许多解磁场计算问题的程序,但结果却大不相同,取决于用户的水平和经验。为了帮助磁铁设计者们获得可接受的结果,开发了一个智能化的CYCLONE型回旋加速器主磁铁设计、分析与指导加工的CAE(计算机辅助工程)。由于程序中安装了专家知识库,即使设计者是一位初学者,也可得到合理的设计结果。  相似文献   

19.
回旋加速器的主磁铁是加速器建造中最重要的部件,它代表了回旋加速器的特性。虽然有许多解磁场计算问题的程序,但结果却大不相同,取决于用户的水平和经验。为了帮助磁铁设计者们获得可接受的结果,开发了一个智能化的CYCLONE型回旋加速器主磁铁设计、分析与指导加工的CAE(计算机辅助工程)。由于程序中安装了专家知识库,即使设计者是一位初学者,也可得到合理的设计结果。  相似文献   

20.
100MeV回旋加速器加速H^-离子,要求引出束流能量为75~100MeV、束流强度为200μA的质子束流,因此决定采用剥离引出。本工作依据100MeV主磁场数据和平衡轨道数据,通过理论研究,计算100MeV回旋加速器不同能量束流引出剥离点的位置;着重计算分析70~100MeV能量的束流剥离引出的光学特性;通过理论计算确定剥离膜各项参数;完成剥离靶及其伺服驱动装置的设计;对真空系统、控制系统等相关专业提出明确的工艺流程和技术要求。最终确定100MeV强流质子回旋加速器双向引出系统初步设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号