首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental results are presented demonstrating that by using rapid thermal nitridation (RTN) of rugged poly-Si surface prior to Si 3N4 deposition, the quality and reliability of reoxidized Si3N4 dielectric (ON dielectric with an effective oxide thickness of about 35 Å) can be significantly improved over ON films on rugged poly-Si without RTN treatment. These improvements include significantly reduced defect-related dielectric breakdown, 103 × increase in TDDB lifetime, lower leakage current, and suppressed electron-hole trapping and capacitance loss during stress  相似文献   

2.
3.
Rugged polysilicon stacked capacitors recently emerged as the storage structures of choice for the manufacture of advanced DRAMs. The authors present the charge-trapping characteristics of such capacitors showing a capacitance increase of more than 50%. It is observed that electron trapping is dominant on rugged structures, whereas hole trapping is observed on smooth structures. Conduction and breakdown properties are also reported. Measurements show that rugged polysilicon capacitors provide the low leakage current, the sharp breakdown distributions, and the trapping characteristics needed for advanced DRAM applications  相似文献   

4.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

5.
The thermal degradation of the Ta2 O5 capacitor during BPSG reflow has been studied. The cause of deterioration of Ta2O5 with the TiN top electrode was found to be the oxidation of TiN. By placing a poly-Si layer between TiN and BPSG to suppress oxidation, the low leakage current level was maintained after BPSG reflow at 850°C. The Ta2O5 capacitor with the TiN/poly-Si top electrode was integrated into 256-Mbit DRAM cells and excellent leakage current characteristics were obtained  相似文献   

6.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of Ta2O5 stack capacitors has been investigated. The leakage currents, breakdown fields, mechanism of conductivity and dielectric constant are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode-deposition-process-induced defects acting as electrically active centers. During deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W. The sputtered W top electrode is a good candidate as a gate of storage capacitors in DRAMs, but sputtering technique is less suitable for deposition of TiN due to the introduction of radiation defects causing deterioration of leakage current. Although some reaction between Al and Ta2O5 occurs, the resulting electrical properties of the capacitors are still acceptable.  相似文献   

7.
Reliability of polyoxide grown by electron cyclotron resonance (ECR) N2O-plasma on heavily phosphorus-doped polysilicon has been investigated for the interpoly dielectrics (IPDs) of nonvolatile memories (NVMs). ECR N2O-plasma polyoxide grown on polysilicon with phosphorus of 1 × 1021 cm−3 exhibits a significantly high breakdown field of 10 MV/cm and low electron trapping rate of 0.5 V, which are regardless of phosphorus concentration. The improvements are attributed to the smooth polyoxide/polysilicon interface, low phosphorus concentration, and nitrogen-rich layer with strong silicon-nitrogen bonds at the polyoxide/polysilicon interface.  相似文献   

8.
We have investigated the electrical characteristics of Al2 O3 and AlTiOx MIM capacitors from the IF (100 KHz) to RF (20 GHz) frequency range. Record high capacitance density of 0.5 and 1.0 μF/cm2 are obtained for Al2 O3 and AlTiOx MIM capacitors, respectively, and the fabrication process is compatible to existing VLSI backend integration. However, the AlTiOx MIM capacitor has very large capacitance reduction at increasing frequencies. In contrast, good device integrity has been obtained for the Al2O3 MIM capacitor as evidenced from the small frequency dependence, low leakage current, good reliability, small temperature coefficient, and low loss tangent  相似文献   

9.
Tantalum pentoxide thin films on Si prepared by two conventional for modern microelectronics methods (RF sputtering of Ta in Ar + O2 mixture and thermal oxidation of tantalum layer on Si) have been investigated with respect to their dielectric, structural and electric properties. It has been found that the formation of ultra thin SiO2 film at the interface with Si, during fabrication implementing the methods used, is unavoidable as both, X-ray photoelectron spectroscopy and electrical measurements, have indicated. The initial films (as-deposited and as-grown) are not perfect and contain suboxides of tantalum and silicon which act as electrical active centers in the form of oxide charges and interface states. Conditions which guarantee obtaining high quality tantalum oxide with dielectric constant of 32–37 and leakage current density less than 10−7 A/cm2 at 1.5 V applied voltage (Ta2O5 thickness equivalent to about 3.5 nm of SiO2) have been established. These specifications make the layers obtained suitable alternative to SiO2 for high density DRAM application.  相似文献   

10.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of thermal thin film (15-35 nm) Ta2O5 capacitors has been investigated. The absolute level of leakage currents, breakdown fields, mechanism of conductivity, dielectric constant values are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode deposition process-induced defects acting as electrically active centers. The dielectric constant values are in the range 12-26 in dependence on both Ta2O5 thickness and gate material. The results show that during deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W, and the leakage current is 5-7 orders of magnitude lower as compared to Al and TiN-electroded capacitors. The high level of leakage current for TiN and Al gate capacitors are related to the radiation defects generated in Ta2O5 during sputtering of TiN, and damaged interface at the electrode due to a reaction between Al and Ta2O5, respectively. It is demonstrated that the quality of the top electrode affects the electrical characteristics of the capacitors and the sputtered W is found to be the best. The sputtered W gate provides Ta2O5 capacitors with a good quality: the current density <7 × 10−10 A/cm2 at 1 V (0.7 MV/cm, 15 nm thick Ta2O5). W deposition is not accompanied by an introduction of a detectable damage leading to a change of the properties of the initial as-grown Ta2O5 as in the case of TiN electrode. Damage introduced during TiN sputtering is responsible for current deterioration (high leakage current) and poor breakdown characteristics. It is concluded that the sputtered W top electrode is a good candidate as a top electrode of storage capacitors in dynamic random access memories giving a stable contact with Ta2O5, but sputtering technique is less suitable (favorable) for deposition of TiN as a metal electrode due to the introduction of radiation defects causing both deterioration of leakage current and poor breakdown characteristics.  相似文献   

11.
We report electrical characteristics of multilayer TiO2–T2O5 based MIS structures obtained by simple electron beam evaporation and annealed in an O2 environment. We describe parameter dependence on annealing conditions and demonstrate an equivalent SiO2 thickness of 3 nm with a leakage current density of 10−7 A/cm2 at an electric field of 106 V/cm.  相似文献   

12.
Dielectric reliability in Al2O3(2–3.1nm)–HfO2(3nm) stack capacitor with Metal–Insulator–Si(MIS) structure is investigated in this paper. We propose an optimized capacitor process through the Time–Dependent Dielectric Breakdown (TDDB) data under various process conditions. Furthermore, due to asymmetric current at both negative and positive voltage stress polarities, we show different lifetime extrapolation by a fluence–driven model. As a result, the maximum allowed operating voltage is projected to be 1.7V (failure rate 10ppm during 10year @ 85°C) for Data “0” retention lifetime.  相似文献   

13.
N-channel metal oxide semiconductor field effect transistors with Ta2O5 gate dielectric were fabricated. The Ta2O5/silicon barrier height was calculated using both the lucky electron model and the thermionic emission model. Based on the lucky electron model, a barrier height of 0.77 eV was extracted from the slope of the ln(Ig/Id) versus ln(Isub/Id) plot using an impact ionization energy of 1.3 eV. Due to the low barrier height, the application of Ta2 O5 gate dielectric transistors is limited to low supply voltage preferably less than 2.0 V  相似文献   

14.
The change in the thickness and chemical states of the interfacial layer and the related electrical properties in Ta2O5 films with different annealing temperatures were investigated. The high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the 700 °C-annealed Ta2O5 film remained to be amorphous and had the thinnest interfacial layer which was caused by Ta-silicate decomposition to Ta2O5 and SiO2. In addition, the electrical properties were improved after annealing treatments. Our results suggest that an annealing treatment at 700 °C results in the highest capacitance and the lowest leakage current in Ta2O5 films due to the thinnest interfacial layer and non-crystallization.  相似文献   

15.
As the gate oxide thickness decreases below 2 nm, the gate leakage current increases dramatically due to direct tunneling current. This large gate leakage current will be an obstacle to reducing gate oxide thickness for the high speed operation of future devices. A MOS transistor with Ta2O5 gate dielectric is fabricated and characterized as a possible replacement for MOS transistors with ultra-thin gate silicon dioxide. Mobility, Id-Vd, Id-Vg, gate leakage current, and capacitance-voltage (C-V) characteristics of Ta2O5 transistors are evaluated and compared with SiO2 transistors. The gate leakage current is three to five orders smaller for Ta2O5 transistors than SiO2 transistors  相似文献   

16.
It is reported for that H2 plasma followed by O2 plasma is more effective for passivating grain boundary states in polysilicon thin film. Polysilicon thin-film transistors (TFTs) made after H2/O2 plasma treatment can exhibit a turn-on threshold voltage of -0.1 V, a subthreshold swing of 0.154 V/decade, an ON/OFF current ratio Ion/Ioff over 1×108, and an electron mobility of 40.2 cm2 /V-s  相似文献   

17.
本文研究了不同厚度的氧化铝对MIM电容直流和射频特性的影响。在1MHz下,对于20nm氧化铝MIM电容,其拥有3850 pF/mm2的高电容密度和可接受的681 ppm/V2的VCC-α电压系数。1MHz时突出的74 ppm/V2VCC-α电压系数,8.2GHz谐振频率以及2GHz时41的Q值可以从100nm氧化铝MIM电容获得。采用GaAs工艺以及原子层淀积制造的高性能ALD氧化铝MIM电容很有可能成为GaAs射频集成电路很有前景的候选器件。  相似文献   

18.
To ensure the required capacitance for low-power DRAMs (dynamic RAMs) beyond 4 Mb, three kinds of capacitor structures are proposed: (a) poly-Si/SiO2/Ta2O5/SiO2 /poly-Si or poly-Si/Si3N4/Ta2O 5/SiO2/poly-Si (SIS), (b) W/Ta2O5 /SiO2/poly-Si (MIS), and (c) W/Ta2O5 W (MIM). The investigation of time-dependent dielectric breakdown and leakage current characteristics indicates that capacitor dielectrics that have equivalent SiO2 thicknesses of 5, 4, and 3 nm can be applied to 3.3-V operated 16-Mb DRAMs having stacked capacitor cells (STCs) by using SIS, MIS, and MIM structures, respectively, and that 3 and 1.5 nm can be applied to 1.5-V operated 64-Mb DRAMs having STCs by using MIS and MIM structures, respectively. This can be accomplished while maintaining a low enough leakage current for favorable refresh characteristics. In addition, all these capacitors show good heat endurance at 950°C for 30 min. Therefore, these capacitors allow the fabrication of low-power high-density DRAMs beyond 4 Mb using conventional fabrication processes at temperatures up to 950°C. Use of the SIS structure confirms the compatability of the fabrication process of a storage capacitor using Ta2O5 film and the conventional DRAM fabrication processes by successful application to the fabrication process of an experimental memory array with 1.5-μm×3.6-μm stacked-capacitor DRAM cells  相似文献   

19.
Vanadium pentoxide (V2O5) films were deposited on glass substrates by vacuum evaporation technique at various deposition temperatures (Ts) viz., 300, 473, 573, 623 and 673 K. The structural and microstructural properties of the films are analyzed using XRD and Raman scattering measurements. X-ray characterization revealed the films deposited at Ts473 K are amorphous and the film deposited at Ts573 K are polycrystalline with orthorhombic symmetry. The corrected lattice constant values are determined from Nelson-Riely plots. The lattice constants “a” and “c” are found to decrease with increase in the deposition temperature, which may be attributed to the increase in non-stoichiometry. Change in the preferred orientation is observed for films deposited at substrate temperatures 623 K which is likely to be governed by the recrystallization process. Various structural parameters such as lattice constants, grain size, and microstrain and dislocation density are determined and the influence of deposition temperature on the structural parameters are discussed.  相似文献   

20.
The Rayleigh scattering and infrared absorption losses of P2 O5-F-doped silica glass, which is a candidate material for ultra-low-loss optical fiber, were investigated experimentally. The Rayleigh scattering loss of 8.5 wt.% P2O5 and 0.3 wt.% F-doped SiO2 glass is found to be 0.8 times that of pure silica glass. It is also found that the infrared absorption property of P2O5-F-SiO2 glass is almost the same as that of pure silica glass. The minimum loss for the proposed composition is estimated to be 0.11 dB/km at 1.55 μm wavelength, and 0.21 dB/km at 1.3 μm wavelength  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号