首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoparticles of erbium-doped yttria (Er:Y2O3) are important precursors to transparent ceramics for high-power solid-state lasers systems. As structure influences properties and, subsequently, performance the purpose of this work is to compare the morphological and chemical nature of the nanoparticles synthesized using two common methods: solution precipitation and combustion synthesis. A thorough characterization of as-prepared and calcined powders was performed using Fourier transform infrared spectroscopy, X-ray diffraction, conventional and high-resolution transmission electron microscopy, and Brunauer–Emmet–Teller methods. Solution precipitation was found to lead to two different precursor compositions (yttrium carbonate or yttrium hydroxide) depending on the precipitating reagent whereas combustion synthesis yielded only phase-pure, cubic Er:Y2O3. The hydroxide precipitation and combustion synthesis methods exhibited agglomerated particles with low surface area after calcining the precursors at 900°C. The addition of a small amount of ammonium sulfate during combustion synthesis was found to reduce the level of agglomeration, resultant particle size, and degree of crystallinity of the calcined Er:Y2O3 nanoparticles. The amount of carbon dioxide (CO2) and water (H2O) on the surface of the Er:Y2O3 powders is dependent on the powder surface area, however, increasing levels of gas absorption on the particle surfaces do not have a detrimental effect on the sinterability. The sintered density increases with increasing surface area and decreasing agglomeration.  相似文献   

2.
Single-crystal X-ray and electron-diffraction studies show the existence in one polymorph of 4CaO.Al2O3. 13H2O of a hexagonal structural element with α= 5.74 a.u., c = 7.92 a. u. and atomic contents Ca2(OH)7- 3H2O. These structural elements are stacked in a complex way and there are probably two or more poly-types as in SiC or ZnS. Hydrocalumite is closely related to 4CaO.A12O3.13H2O, from which it is derived by substitution of CO32-for 20H-+ 3H2O once in every eight structural elements; similar substitutions explain the existence of compounds of the types 3CaO Al2O3.Ca Y 2- xH2O and 3CaO Al2O3 Ca Y xH2O. On dehydration, 4CaO.Al2O3.13H2O first loses molecular water and undergoes stacking changes and shrinkage along c. At 150° to 250°C., Ca(OH)2 and 4CaO.3Al2O3.3H2O are formed and, by 1000°C., CaO and 12CaO.7Al2O8. The dehydration of hydrocalumite follows a similar course, but no 4CaO.3Al2O3.3H2O is formed.  相似文献   

3.
Hydroxyl-type Sc2O3 precursors have been synthesized via precipitation at 80°C with hexamethylenetetramine as the precipitant. The effects of starting salts (scandium nitrate and sulfate) on powder properties are investigated. Characterizations of the powders are achieved by elemental analysis, X-ray diffractometry (XRD), differential thermal analysis/thermogravimetry (DTA/TG), high-resolution scanning electron microscopy (HRSEM), and Brunauer-Emmett-Teller (BET) analysis. Hard-aggregated precursors (γ-ScOOH·0.6H2O) are formed with scandium nitrate, which convert to Sc2O3 at temperatures ≥400°C, yielding nanocrystalline oxides of low surface area. The use of sulfate leads to a loosely agglomerated basic sulfate powder having an approximate composition of Sc(OH)2.6(SO4)0.2·H2O. The powder transforms to Sc2O3 via dehydroxylization and desulfurization at temperatures up to 1000°C. Well-dispersed Sc2O3 nanopowders (∼64.3 nm) of high purity have been obtained by calcining the basic sulfate at 1000°C for 4 h. The effects of SO42− on powder properties are discussed.  相似文献   

4.
A (Ce0.67Tb0.33)Mn x Mg1− x Al11O19 phosphor powder was synthesized, using a simple sol–gel process, by mixing citric acid with CeO2, Tb4O7, Al(NO3)3·9H2O, Mg(OH)2·4MgCO3·6H2O, and Mn(CH3COO)2. The phosphor crystallized completely at 1200°C, and the phosphor particle size was between 1 and 5 μm. The excitation spectrum was characteristic of Ce3+, while the emission spectrum was composed of lines from Tb3+ and Mn2+. The Mn2+ gave a green fluorescence band, and concentration quenching occurred when x > 0.10. The luminescent properties of the phosphor were explained by a configurational coordinate model.  相似文献   

5.
Dense, crack-free, and uniform La2Mo2− x W x O9 ( x =0, 0.1, and 0.2) nanocrystalline films were successfully synthesized on poly-alumina substrates via a modified sol–gel method, with inorganic salt of La(NO3)3·6H2O, (NH4)6Mo7O24·4H2O, and (NH4)6H2W12O24 as precursors. Pure La2Mo2O9 phase was confirmed by X-ray diffractometer when the annealing temperature was >500°C. The average grain size of the La2Mo2− x W x O9 films is in the range of 90–400 nm, depending upon the conditions of thermal treatment, and the thickness of films can reach 1 μm by repetitive spin-coating. The electrical conductivity increases with decreasing grain size and reaches 0.074 S/cm at 600°C in the film with a grain size of 90 nm, which is one order of magnitude higher than that in the corresponding bulk materials. W-doping can suppress the phase transition that occurs at 580°C in pure La2Mo2O9 and enhance the low-temperature ionic conductivity. Furthermore, the activation energy of conductivity in the nanocrystalline La2Mo2O9 films decreases to about 0.6 eV in comparison with 1.0 eV in the bulk ones, which implies that the grain resistance prevails in the total resistance, when grain size reduces to nanometer domain.  相似文献   

6.
Pr3+-doped YF3 (orthorhombic), YO0.80F1.40 (orthorhombic), YOF (rhombohedral), and Y2O3 (cubic) films were synthesized on quartz-glass substrates through pyrolysis of a single-source trifluoroacetate precursor at temperatures between 400° and 900°C in air. Phase-selective deposition was achieved by controlling heating temperature and time. YF3, which formed first from the precursor, was transformed to YO0.80F1.40, YOF, and Y2O3. Photoluminescent properties of Pr3+-doped films were examined using ultraviolet excitation. An intense green photoluminescence was observed in the YOF:Pr3+ film, which was deposited at 700°C, through an efficient charge transfer (O2−–Pr3+) excitation.  相似文献   

7.
Structural evolution in the X-ray amorphous precursors to La2Sn2O7 and La2Ti2O7 is examined using IR and Raman spectroscopy. These precursors are prepared by rapid coprecipitation from mixed aqueous solutions of the corresponding metal chlorides. Rapid coprecipitation from an SnCl2−6 and La3+-containing aqueous solution yields microcrystalline particles of SnO2· n H2O and La(OH)3, which instantaneously interconnect to form an ultimate, complex colloid particle. The Ti(OH)2+2 and La3+ in the other solution system coprecipitate into a different, complex colloid (an unidentified phase), which is definitely not a mixed dispersion of single-component colloids. A comparative examination of the vibrational spectra of the coprecipitates heated to various temperatures indicates that the SnO2 and anatase phases develop in the respective precursors before crystallization of the desired double oxides. Crystallization itself can be attributed to a solid-state reaction among the various microcrystallites of each single-metal oxide in a gel particle of the precursor.  相似文献   

8.
Heat treatments in several environments were performed on a series of compounds in the Al2O3 and Y2O3 system: Al2O3Y3Al5O12 eutectic, Y3Al5O12, YAlO3, Y4Al2O9, and Y2O3. The yttrium aluminates were found to be stable at high temperatures under vacuum and in air. However, when they were heat-treated under vacuum in proximity to SiC, degradation was observed. This was found to be primarily a result of carbothermal reduction. In a similarly reducing environment without Si, the yttrium aluminates, and Al2O3 and Y2O3, all exhibited degradation by carbothermal reduction. Based upon the experimental results, a degradation mechanism for yttrium aluminates was proposed.  相似文献   

9.
The purpose of this study was to identify and correlate the microstructural and luminescence properties of europium-doped Y2O3 (Y1– x Eu x )2O3 thin films deposited by metallorganic chemical vapor deposition (MOCVD), as a function of deposition time and temperature. The influence of deposition parameters on the crystallite size and microstructural morphology were examined, as well as the influence of these parameters on the photoluminescence emission spectra. (Y1– x Eu x )2O3 thin films were deposited onto (111) silicon and (001) sapphire substrates by MOCVD. The films were grown by reacting yttrium and europium tris(2,2,6,6-tetramethyl–3,5-heptanedionate) precursors with an oxygen atmosphere at low pressures (5 torr (1.7 × 103 Pa)) and low substrate temperatures (500°–700°C). The films deposited at 500°C were smooth and composed of nanocrystalline regions of cubic Y2O3, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600°C developed, with increasing deposition time, from a flat, nanocrystalline morphology into a platelike growth morphology with [111] orientation. Monoclinic (Y1– x Eu x )2O3 was observed in the photoluminescence emission spectra for all deposition temperatures. The increase in photoluminescence emission intensity with increasing postdeposition annealing temperature was attributed to the surface/grain boundary area-reduction effect.  相似文献   

10.
Lattice parameters of RE4Al2O9 (RE = Y, Sin, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) prepared at 1600–1800°C and those of RE4Ga2O9 (RE = La, Pr, Nd, Sm, Eu, and Gd) prepared at 1400–1600°C were refined by Rietveld analysis for the X-ray powder diffraction patterns. The parameters increased linearly with the ionic radius of the trivalent rare-earth elements ( r RE). High-temperature differential calorimetry and dilatometry revealed that both RE4Al2O, and RE4Ga2O, have reversible phase transitions with volume shrinkages of 0.5–0.7% on heating and thermal hystereses. The transition temperatures (7tr) decreased from 1300°C (Yb) to 1044°C (Sm) for RE4A12O9, except for Y4Al2O9 ( Ttr = 1377°C), and from 1417°C (Gd) to 1271°C (La) for RE4Ga2O, with increasing ionic radius of the rare-earth elements. These transition temperatures were plotted on a curve against the ionic radius ratio of Al3+ or Gd3+ and RE3+ ( r A1Ga/rRE) except for Y4Al2O9.  相似文献   

11.
2 mol% Y2O3-ZrO2 polycrystals were annealed in water and under vacuum to highlight the effect of the presence of H2O on the low-temperature degradation transformation. The specimen surfaces with monoclinic phases transformed during annealing in the different environments were analyzed by X-ray photoelectron spectroscopy with special interest on the electron binding energy change of the constituent ions of the 2 mol% Y2O3-ZrO2 ceramics after the degradation transformation. It was found that no change occurred for the electron-bonding energies of core levels of zirconium ions after the transformation, whereas Y-OH bonds were formed during annealing in water. This result suggested a possibility that the preferred hydration of yttrium took place at the surface of Y2O3-partially-stabilized ZrO2, which is likely to be the reason for the low-temperature degradation accelerated by the presence of H2O.  相似文献   

12.
Amorphous films in the system Al2O3–Y2O3 were prepared by the rf sputtering method in the range of 0–76 mol% Y2O3, and their density, refractive index, and elastic constants were measured. All of the physical properties of the amorphous Al2O3–Y2O3 films had a similar compositional dependence; that is, they increased continuously, but not linearly with increasing Y2O3 content. To confirm the coordination states of aluminum and yttrium ions in the amorphous Al2O3–Y2O3 films, the Al K α X-ray emission spectra and the X-ray absorption near edge structures (XANES) were measured. The average coordination number of aluminum ions in the amorphous films containing up to about 40 mol% Y2O3 content was 5, that is a mixture of 4-fold- and 6-fold-coordinated states. In the region of more than about 50 mol% Y2O3, the fraction of the 6-fold-coordinated aluminum ions increased with increasing Y2O3 content, while the results led to the conclusion that the coordination number of yttrium ions was always 6, regardless of composition. These results indicate that, in amorphous films in the system Al2O3–Y2O3, the change of the coordination state of aluminum ions has an important effect on physical properties.  相似文献   

13.
The intrinsic kinetics, unaffected by diffusional and masstransfer effects, of the CO2 degradation of superconducting particles have been determined using a nonisothermal technique. Below 900°C, the carbonization of YBa2Cu3O7- x leads to formation of BaCO3, Y2Cu2O5, CuO, and Cu2O. A further increase in temperature results in formation of BaCuO2 from BaCO3 and CuO. The carbonization rate shows the 1.5th-order dependence on the amount of unreacted YBa2Cu3O7- x for the temperature range of 550° to 815°C. The activation energy of carbonization was determined to be 95.1 kJ · mol−1.  相似文献   

14.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

15.
The formation of spherical pores and regions free of Y2BaCuO5 (2-1-1) has been studied by melt processing Y1.6Ba2.3Cu3.3O x: in two different atmospheres (air and oxygen). When the sintered Y1.6Ba2.3Cu3.3O x specimens are melted at 1050°C, many spherical pores form in the melted specimens. During the subsequent cooling, the pores are filled by liquid flow and finally solidified to Y2BaCuO5-free regions. Melt processing in an oxygen atmosphere produces more pores and regions free of 2-1-1 than in air. Because peritectic melting of YBa2Cu3O7-y in an oxygen atmosphere produces more oxygen gas than that in air, the formation of the pores and Y2BaCuO5-free regions is suggested to be attributed to the oxygen evolution during the peritectic melting of YBa2Cu3O7−y  相似文献   

16.
The saturation surface of cassiterite, SnO2, was determined for liquids in the system K2O–Al2O3–SiO2 as a function of bulk composition and temperature. At fixed K2O/Al2O3 cassiterite solubility varies weakly with SiO2 concentration (76 to 84 mol%), temperature (1350° to 1550°C), and log ( f O2) (−0.7 to −5.3). Cassiterite solubility is also approximately independent of composition in liquids with molar ratios of K2O/Al2O3 lessthan equal to 1 (peraluminous liquids). As K2O/Al2O3 increases from 1 (peralkaline liquids), however, cassiterite solubility increases steeply and approximately linearly with K2O in excess of Al2O3. It is proposed that potassium in excess of aluminum combines with Sn4+ to form quasi-molecular complexes with an effective stoichiometry of K4SnO4.  相似文献   

17.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

18.
The precursor [NH4]2[Ti(catecholate)3] · 2H2O is known to react with Ba(OH)2· 8H2O in an acid/base process that generates Ba[Ti(catecholate)3] · 3H2O, a compound which undergoes low-temperatue calcination to produce BaTiO3 powder. Attempts to develop similar routes to PbTiO3 have been frustrated, since lead(II) hydroxide does not exist. The amphoteric yellow PbO and the basic oxide, Pb6O(OH)64+, are both insufficiently basic to react with [NH4]2[Ti(catecholate)3] · 2H2O. Based on the large sizes of both the [Ti(catecholate)3]2- anion and the Pb2+ cation, a precipitation method has been developed in which lead nitrate and [NH4]2[Ti(catecholate)3] · 2H2O are added together in an aqueous medium causing precipitation and leaving only NH4NO3 in solution. The lead-titanium-catecholate complex that forms in this manner undergoes low-temperature pyrolysis to produce PbTiO3. SEM indicates a submicrometer ultimate crystallite size.  相似文献   

19.
Zinc oxide (ZnO) nanoparticles coated with 1–5 wt% Bi2O3 were prepared by precipitating a Bi(NO3)3 solution onto a ZnO precursor. Transmission electron microscopy showed that a homogeneous Bi2O3 layer coated the surface of the ZnO nanoparticles and that the ZnO particle size was ∼30–50 nm. Scanning electron microscopy showed that ZnO grains sintered at 1150°C were homogeneous in size and surrounded by a uniform Bi2O3 layer. When the ZnO grains were surrounded fully by Bi2O3 liquid phases, further increases in the ZnO grain size were not affected by the Bi2O3 content. This predesigned ZnO nanoparticle structure was shown to promote homogeneous ZnO grains with perfect crystal growth.  相似文献   

20.
Microstructural changes occurring during oxidation of the reduced form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X 4+Ti X 3+O3) and during reduction of the oxidized form of donor-doped BaTiO3 (Ba1− X D X .Ti1− X /44+( V Ti) X /4O3) were studied using TEM. Samples of both types of solid solutions, containing different La concentrations (from 2 to 20 mol% La), were prepared by sintering under reducing conditions and in air, respectively. The reduced form of donor-doped BaTiO3 was oxidized by annealing at high temperatures (1150° and 1350°C) in air, while the oxidized form was reduced by annealing under reducing conditions. Because of oxidation of the reduced phase of donor-doped BaTiO3, the Ti-rich phases Ba6Ti17O40 and BaLa2Ti4O12 were precipitated. Reduction of the oxidized form caused precipitation of the Ba-rich phase Ba2TiO4 preferentially inside the matrix grains. All precipitates had well-defined orientational relationships with the perovskite matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号