首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于旋流燃烧技术,自行设计了一款动态旋流燃烧器,通过电机带动旋流叶片旋转以获得不同的旋流强度。对燃烧器五组旋流叶片转速(v=600 rad/min、900 rad/min、1200 rad/min、1500 rad/min和1800 rad/min)工况进行了数值模拟。结果表明:当旋流叶片转速v=600 rad/min时,燃烧室内没有形成中心回流区域;随着v的增大,中心回流区域的形成直接影响火焰结构和高温区域面积,高温区面积明显减小,并逐渐向燃烧室前段移动,燃烧室内整体温度均匀性得到很好地改善。燃烧室出口NO排放量先增大后减小,在旋流叶片转速v=900 rad/min时,NO排放量达到峰值。当v从900 rad/min增大至1800rad/min时,燃烧室出口处NO排放量降低了98.71%。较高的旋流叶片转速对于提高燃烧器的燃烧效率和燃烧室的整体工作性能,以及降低污染物排放是一个好的选择。  相似文献   

2.
双锥煤粉燃烧室在小容量工业锅炉中广泛采用水冷却方式,但随着市场对高容量锅炉需求的增加,双锥燃烧室体积增大、数量增多,如仍采用水冷却的方式将导致安装困难、水系统复杂等问题,亟需开发新的冷却方式。空气冷却形式具有结构简单、预热后的空气可以增加煤粉的着火稳定性等优点,需要考察其首次应用于双锥煤粉燃烧室中的效果。为了确定空气冷却式燃烧室燃烧和壁面冷却情况,采用数值模拟技术对14 MW工业锅炉燃烧室和炉膛进行三维建模,得到50%和100%两种负荷下不同内外二次风配风比例下燃烧室内部燃烧情况、金属壁面温度、出口火焰形状和炉膛充满度。结果表明:控制总空气过量系数不变,随着内二次风比例的逐渐增加,燃烧室内的平均温度逐渐降低;50%负荷下金属壁面温度随二次风比例的增加逐渐降低,100%负荷下金属壁面温度先降低后升高,这是内二次风助燃燃烧和外二次风的冷却共同作用的结果。随着内二次风比例的增加,金属壁面的高温区域逐渐后移,集中于后锥出口区域;在50%负荷下内二次风量占总空气量比例为0.4时,金属壁面具有最高温度930 K,100%负荷下内二次风量占总空气量比例为0.2时,壁面金属最高温度835K,2个最高温度均出现在后锥收缩段,据最高温度推荐壁面材料选取0Cr18Ni9,2种负荷下最高温度出现时燃烧室内的内二次风配风量为2 600 Nm3/h,应尽量使内二次风远离此配风量;50%负荷下燃烧室平均温度、金属壁面平均温度及最高温度均高于100%负荷,是空气冷却结构需要重点考察的工况。随着内二次风比例的逐渐增加,火焰长度先增加后减小,当内二次风过小时,出口气速较小,外二次风具有向中心的速度分量,火焰主要集中在炉膛前部。随着内二次风比例的增加,出口速度增大,火焰变长变细。但随着比例的继续增加,外二次风的轴向速度变小,出口火焰的旋流强度完全由二次风决定,出口旋流强度的增大导致了火焰的变短变粗,在2种负荷下,火焰长度较长时,内二次风比例为0.4~0.5。内外二次风比例为0.5∶0.5时,燃烧室内燃烧情况和壁面温度均匀稳定,火焰在炉膛内的充满度最好,是2个考察负荷下均较适合的运行参数。  相似文献   

3.
韩徳琳  李丹  王天天  张海  张扬  王随林 《化工进展》2022,41(6):2915-2923
石化炉、加热炉等设备中燃烧过程的污染物控制具有重要意义。旋流预混燃烧过程具有低NO x 排放的潜力,引发了学术界和工业界的广泛关注。结合钝体燃烧和旋流燃烧各自的优势,本文设计了带有位移钝体的旋流预混燃烧器。首先研究了不同钝体结构下的污染物的生成情况,确定了最优的钝体结构,在此基础上进一步研究了在不同旋流数下污染物生成、火焰形态和温度场分布情况。研究发现,钝体角度为30°、体积较小的倒锥形钝体具有较低的NO x 和CO生成量。NO x 生成量随着旋流数从0增加到0.83呈先减小后增加的趋势,并且当旋流数为0.25时,NO x 生成量最低。在同一热功率下,火焰高度随着旋流数的增加而减小。在同一旋流数下,火焰宽度随热功率增大呈增大趋势。NO x 生成量变化规律与其火焰温度分布规律一致,即NO x 生成量最低的工况下火焰温度也比较低。由此推测旋流引发的温度变化是NO x 生成量变化的主要影响因素之一。本文的研究结论对旋流预混燃烧器的设计提供了理论基础。  相似文献   

4.
为应对燃煤工业锅炉日益严苛的排放标准,提出了一种新型低NO_x旋流燃烧器,将煤粉预燃与燃烧器空气分级、炉膛空气分级进行耦合,通过改变燃烧系统的配风布置对煤粉预燃燃烧状态进行调整,研究了一次风率、内外二次风率、外二次风入射方式、循环风率和燃尽风率对NO_x排放特性的影响。结果表明:在试验工况下当一次风率从15.4%提高到28.7%,预燃室内氧气浓度增大,一次风携带的氧气可直接将煤粉热解释放挥发分中含氮化合物HCN、NH_3等中的N氧化为NO,NO_x生成量由284.4 mg/m~3逐渐增至326.7 mg/m~3。当内外二次风率比由0.46增大到1.4,NO_x排放浓度先下降后上升;由于内二次风量影响预燃室内过量空气系数和湍动强度,外二次风量影响炉膛内部主燃区煤粉发生燃烧反应的湍动混合强度,在二次空气配比变化的综合作用下,内外二次风率比为1.0时,NO_x排放值最低为211.2 mg/m~3。随着外二次风内部入射风量与端面入射风量比值由0增大到4.56,NO_x生成浓度先下降后上升;由预燃室端面入射的外二次空气射流边界较长,主燃区相对较大,燃烧整体较为均衡,而从预燃室内部入射的外二次风促进了预燃室出口气粉混合物在炉膛内与助燃空气的混合;当外二次风内部、端面射流风率比为0.25时,煤粉在预燃室出口区域的湍动强度提高,在局部还原性气氛下,NO_x生成浓度有最低值230.9 mg/m~3。当循环风率从0增大到30.6%时,内外二次风中氧气浓度降低,预燃室和炉膛主燃区还原性气氛增强,挥发分中含氮化合物HCN、NH_3等中的N迁移形成N_2的概率增加,NO_x排放量由250.7 mg/m~3逐渐降低到221.1 mg/m~3。随着燃尽风率由0提高到29%,NO_x排放值先减小后增大;燃尽风率提高时二次风率随之降低,内外二次风湍动扩散能力减弱,主燃区还原性气氛增强;燃尽风率进一步提高使得主燃区氧量不足,燃尽区氧化性氛围较强,大量焦炭和含氮化合物在燃尽区发生氧化反应,导致NO_x生成量增加;当燃尽风率为19.6%时,NO_x生成值最低为253.5 mg/m~3。整体上,当一次风率为17%~19%,内外二次风率比为0.8~1.0,外二次风由预燃室端面入射,循环风率为15%~20%,燃尽风率为19%~22%时,NO_x排放值为212~231 mg/m~3,相比试验工况下最大NO_x排放量下降29%~35%。  相似文献   

5.
基于温度判据和时间判据,本文建立了考虑旋流入口条件和CO2稀释的无焰燃烧理论判别方法并进行验证,进而讨论了结构参数和操作参数对燃烧模式和火焰稳定性的影响。模型预测的旋流无焰燃烧临界氧浓度与文献中实验数据相比,最大相对误差不超过8%。降低氧浓度、减小当量比或提高入口流量时,温度判据1变化不大,而时间判据更易满足,因此有利于实现无焰燃烧;低旋流数条件下,无焰燃烧稳定性较差。增大燃烧室高度时,温度判据1更易满足,而时间判据更难满足,温度判据1分界线下移更快,有利于形成无焰燃烧;减小燃烧室截面积时,温度判据1变化不大,而时间判据更易满足,有利于实现无焰燃烧;增大燃烧器出口面积时,温度判据1和时间判据均更难满足,且时间判据分界线下移更快,不利于形成无焰燃烧。  相似文献   

6.
循环流化床预热燃烧过程中,预热燃料在下行燃烧室的燃烧过程至关重要。为了研究预热燃料在下行燃烧室中的流动和燃烧特性,采用计算流体力学软件Fluent,结合试验手段,对不同二次风喷口配风方式下,预热燃料在下行燃烧室的燃烧过程进行试验及数值模拟,对比了不同配风方式下,流动特性、温度特性、组分浓度分布特性以及氮氧化物排放特性的差异。结果表明,预热燃料在下行燃烧室的燃烧过程中,二次风会卷吸烟气在下行燃烧室上部产生回流,稀释反应物,在中心喷口配风时回流区域更大。不同配风方式下,下行燃烧室中的温度分布不同。环形喷口配风时下行燃烧室中的温度峰值为1 459 K,而中心喷口配风时下行燃烧室的温度峰值为1 555 K,同时环形喷口配风时下行燃烧室的高温区域较小,温度分布更加均匀。环形喷口配风时,预热燃料和二次风的混合更加充分,高温煤气和空气的反应更加强烈,有助于燃料的着火及升温。而中心喷口配风时下行燃烧室顶部的CO和H_2等还原性气体浓度较高,有助于还原NO_x。同时较高的温度促进了气化反应,生成更多的CO和H_2,在燃尽风喷入前的区域形成还原性气氛,有助于进一步还原NO_x。二次风中心喷口配风时,更多的氮氧化物被还原,尾部烟气中的NO_x排放浓度为107×10~(-6),二次风环形喷口配风时,尾部烟气中的NO_x排放浓度为121×10~(-6)。  相似文献   

7.
宣钢旋流顶燃式热风炉传输现象的研究   总被引:1,自引:0,他引:1  
针对宣钢旋流顶燃式热风炉的燃烧室,建立了气体流动、传热及燃烧的数学模型,通过数值模拟研究了燃烧室的流场、温度场和CO浓度场.结果表明,热风炉燃烧室出口速度和温度分布很不均匀;由于空气过剩系数过低,导致燃烧室出口有6%的CO剩余,火焰贴近燃烧室壁面,严重影响热风炉的寿命.将空气过剩系数增加到1.05后比较发现,燃烧室出口CO质量分数低于1%,火焰分布更加合理,增加燃烧室高度能有效提高燃烧室出口速度和温度的分布均匀性,速度最大差由10m/s降到约2m/s,温度最大差由140℃降到约90℃.  相似文献   

8.
张鑫  陈隆 《洁净煤技术》2020,26(2):66-72
高速煤粉燃烧器火焰喷射速度高达60~200 m/s,炉膛内火焰较长,对流换热比例提高,使得炉膛内温度分布均匀,没有传统低速煤粉燃烧器火焰短,炉膛内局部过热和结焦等缺点。笔者以14 MW高速煤粉燃烧器为研究对象,采用数值模拟的方法,研究旋流强度、二次风温度等关键参数对燃烧器内煤粉燃烧的影响,针对燃烧器内煤粉燃烧特点进行结构优化设计。对旋流强度研究结果表明,当旋流强度S=2.2、2.8、3.2及3.7时,燃烧器内回流区形状变化不大,从一次风喷口开始到旋流叶片位置结束,回流区环绕一次风管;最大回流量在一次风喷口附近,距离一次风喷口越远,回流量越小;旋流强度对一次风喷口附近最大回流量影响不大,喷口附近最大回流量均在0.45 kg/s左右,当距喷口超过一定距离(L/H<0.35)时,旋流强度对回流量的影响开始变得明显,表现为旋流强度越大,回流区末端回流量越大,回流区末端回流量最大为0.30 kg/s,最小为0.17 kg/s。研究燃烧器喷口处燃烧状态表明,喷口处火焰旋流强度为0.10~0.28,与入口旋流强度正相关,火焰喷射速度150 m/s,为中等旋流强度的高速旋流火焰;喷口中心区可燃性组分富集,缺氧,燃料和氧气分层分布。当旋流强度提高,喷口中心区可燃性组分浓度降低,CO浓度从11%降低到10%,H2浓度从1.65%降低到1.40%,焦炭浓度从0. 14%降低到0. 11%,喷口边缘O2浓度从13%降低到10%。旋流强度S=3.2和S=3.7时可燃组分和氧气浓度分布变化较小,说明旋流强度提高对燃烧的影响减弱。考察0、100和200℃下二次风温度对燃烧的影响,结果表明,当二次风温度提高,煤粉在燃烧器内的反应时间有所降低,从0.15 s降低到0.11 s,但燃烧器内的煤粉碳转化率提高20%,达到65%。对燃烧器结构进行优化,加入中心风,对比中心风直流和旋流与不加中心风3种状态,结果表明,加入旋流中心风和直流中心风后喷口中心区半径r≤75 mm范围内可燃组分浓度降低,采用直流时由于气流刚性较强,喷口中心区氧气浓度升高,采用旋流中心风对中心区氧浓度影响弱,对可燃组分浓度降低效果优于直流中心风。  相似文献   

9.
采用传统设计方法对浸没燃烧技术中的燃烧器进行设计,在实际应用过程中总出现回火、脱火、燃烧不稳定问题,本文根据火焰稳定特性知识构建了天然气火焰稳定性图,提供了一种对于燃烧气体燃料浸没燃烧器燃烧室的设计思路,并对该思路下设计的浸没燃烧器燃烧室进行了具体设计;融入旋流稳焰原理,一次空气与燃料旋流预混,二次空气冷却燃烧室外壁并被预热然后在燃烧室头部进入燃烧室助燃,进行了浸没燃烧器的总体设计,并对设计的燃烧器在自行设计的增压浸没燃烧试验台进行了初步试验研究,试验侧重燃烧稳定性与污染物排放。结果表明该浸没燃烧器燃烧稳定性相对较好,且由于良好的结构设计,节能减排效果显著。  相似文献   

10.
旋流对冲燃烧锅炉在燃用劣质煤种时,由于劣质煤着火困难,会造成主燃区温度较低,引起炉内燃烧不稳定,并且水冷壁经常发生高温腐蚀和结渣,上部对流受热面超温,飞灰含碳量也增加,锅炉热效率明显降低,是目前电站锅炉运行面临的一大难题。针对某1 000 MW旋流对冲燃烧锅炉,采用CFD方法研究了锅炉燃用劣质煤种时炉内燃烧组织的分布特性,并将结果与设计煤种进行了对比分析。结果表明:与设计煤种相比,劣质煤灰分高,热值低,原燃烧器的分级配风方式不利于劣质煤粉及时着火,燃点推迟,炉膛水平截面温度分布不均匀,四周水冷壁中心附近出现高温区和高浓度CO,炉膛中心高温区减小,火焰中心上移,因此对流受热面附近出现高温区域,这些会导致水冷壁高温腐蚀,对流受热面超温问题发生,同时出口烟温也会增加,即锅炉效率降低。另外,由于分级燃烧组织的不合理,炉膛出口NOx生成量也明显增加。在实际运行中,可以采用混煤掺烧的方式,改善劣质煤种的燃烧特性,从而提高锅炉燃烧稳定性;其次,可以对原旋流燃烧器进行改造优化,如适当减小一次风速,或者在水冷壁中心增设墙式风,保证劣质煤粉有足够的时间预热并能够及时与二次风混合,稳定着火,提高锅炉燃用劣质煤种的能力。  相似文献   

11.
High temperature air was adopted by combustion in high excess air ratio in a circulating fluidized bed. Experiments on pulverized coal combustion in high temperature air from the circulating fluidized bed were carried out in a down-fired combustor with the diameter of 220 mm and the height of 3000 mm. The NO emission decreases with increasing the residence time of pulverized coal in the reducing zone, and the NO emission increases with excess air ratio, furnace temperature, coal mean size and oxygen concentration in high temperature air. The results also revealed that the co-existing of air-staging combustion with high temperature air is very effective to reduce nitrogen oxide emission for pulverized coal combustion in the down-fired combustor.  相似文献   

12.
Hongtao Zhang 《Fuel》2010,89(5):1177-1180
The effects of gas temperature fluctuation on the NO release from pulverized coal particle during char combustion are investigated. The computed results show that the NO formation through the heterogeneous oxidation and reduction reactions is influenced by the gas temperature fluctuation for the particles with initial diameters of 10-50 μm. The gas temperature fluctuation leads to faster NO release from the particle. The heterogeneous NO formation during the char combustion is further enhanced by the increase in the fluctuation amplitude of gas temperature.  相似文献   

13.
随着我国经济的飞速发展,作为重要基础材料的水泥产品需求量极大且趋于稳定。水泥生产过程中的NOx排放与燃煤火电厂和汽车尾气产生的NOx排放已成为空气污染的主要来源,而分解炉是降低水泥生产工艺中NOx排放的有效设备。笔者在引入高温烟气的模拟分解炉内进行空气分级燃烧试验,研究配风位置、配风比例以及石灰石/煤比例对分解炉内燃烧和NOx排放特性的影响规律。试验稳定过程中,高温烟气发生装置的给煤量和配风量保持不变。此时,高温烟气发生装置的时间平均温度为911℃,其产生的高温烟气温度稳定在750℃左右,高温烟气中NOx主要以NO和N2O的形式存在,其浓度分别为261.49×10^-6和12.96×10^-6。该股高温烟气将模拟实际回转窑产生的烟气进入分解炉内。在分解炉的上部区域(距离顶部0~2 000 mm区域)的温度为800~1 000℃,与实际分解炉运行温度一致,排放烟气中NOx主要以NO和N2O形式存在。随着中间配风位置的下移,煤粉燃烧放热区域下移,而顶部区域的石灰石吸热量变化较小,则原有热量平衡被打破且原有吸热量高于现有放热量,导致顶部区域内燃烧温度降低。此时,还原气氛中煤粉燃烧和石灰石分解反应时间均变长,导致NOx的还原反应更加充分。但石灰石分解产生的氧化钙(CaO)作为中间产物会促进NO的生成反应,其反应时间增加也促进了NO的生成;另一方面,石灰石作为催化剂参与焦炭和挥发分还原NO的反应过程,分解炉顶部区域的温度下降使得该还原反应变弱。综上,NO的最终排放浓度是以上反应的综合结果。随着配风位置的下移,该变化对NO的生成作用更加明显,故NO的排放浓度逐渐升高。当一级风量与二级风量的配风比例降低时,分解炉上部区域的煤粉燃烧份额减少和石灰石分解量降低,而分解炉下部区域的煤粉燃烧份额增加和未分解的石灰石份额增加,但石灰石的吸热增加量高于燃烧增加份额的放热量,因此分解炉内整体温度均降低。分解炉内NO浓度是由石灰石催化的氧化过程和还原过程综合决定的。一级风量变小时,尾部CO浓度随之增加,烟气中NO浓度呈现降低的趋势。当石灰石/煤比例增加时,分解炉内沿程温度逐渐下降。随着石灰石给粉量增加,分解炉内石灰石受热分解产生的CaO浓度增加,CaO催化NO还原反应更剧烈,从而NO浓度逐渐降低。而石灰石给粉量增加和分解炉温度降低的过程导致尾部的CO浓度升高。  相似文献   

14.
李慧  杨石  周建明 《洁净煤技术》2020,26(2):109-114
半焦是低阶煤经低温热解后的产物,其中半焦粉与煤粉工业锅炉常用煤种烟煤相比价格低廉。若能将半焦粉用作煤粉工业锅炉的燃料,既可拓宽煤粉工业锅炉的适用燃料范围,又可增强煤粉工业锅炉的市场竞争力。由于半焦挥发分低、固定碳高,实现其着火和稳定燃烧需要更高的温度,同时,降低NOx初始排放也是一个技术难题。为了实现半焦在煤粉工业锅炉中的稳定燃烧及NOx排放的降低,采用两段式滴管炉开展半焦空气分级燃烧NOx排放规律研究。笔者对半焦空气不分级燃烧NOx排放规律进行了研究,主要探究了主燃区温度(1 000~1 400℃)及过量空气系数的影响,为后续空气分级燃烧降低NOx的效果提供对比依据。半焦空气分级燃烧试验主要研究了主燃区温度(1 000~1 400℃)及二次风比例(0.4~0.8)的影响,并从燃尽率、NOx减少比例、灰样微观孔隙和形貌等方面进行论证,试验结果表明,在空气不分级燃烧条件下,即燃尽风配风比例为0时,随着主燃区温度升高,NOx排放浓度随之迅速升高;随着过量空气系数增加,NOx浓度先迅速增加,过量空气系数大于1.15时,NOx浓度增速变缓;在空气分级燃烧中,相同主燃区温度条件下,二次风比例由高到低变化时,NOx排放呈先迅速下降后缓慢回升的变化趋势,燃尽率先快速升高而后趋于平缓。二次风比例为0.56时(即燃尽风率为0.39),燃尽率达90%,NOx排放浓度降至最低,为120 mg/m^3以下,此时是试验条件下的最佳二次风比例。  相似文献   

15.
基于煤粉燃烧机理,结合骨料烘干工艺,建立了骨料烘干煤粉燃烧器内部场的控制模型,采用Fluent软件模拟煤粉燃烧器内部燃烧状况,考察了一、二、三次风的风速对煤粉燃烧器中心轴线处CO, CO2, NO和SO2浓度的影响。结果表明,在研究的风速范围内,一、二、三次风风速越大燃烧越充分,一、二、三次风风速越小,产生的NO越少;三次风风速为40 m/s时,SO2浓度最低;较合理的控制参数为一次风风速30~35 m/s,二次风风速45~50 m/s,三次风风速30~40 m/s。  相似文献   

16.
杨石 《洁净煤技术》2020,26(2):102-108
随着我国对大气污染物排放监管力度的日益严格,NOx控制技术已广泛应用于工业生产的各个领域。作为一种直接、简便的NOx排放控制技术,富氧空气燃烧技术已经出现在燃气锅炉和内燃发动机等行业,然而在燃煤锅炉行业中却鲜有应用。为了验证富氧空气燃烧技术在煤粉工业锅炉中的NOx减排效果,笔者以神府烟煤作为燃料,利用两段式滴管炉试验系统模拟煤粉在锅炉内燃烧的实际情况,采用热态试验方法,研究了烟煤富氧空气分级燃烧的NOx排放特性,并与单级供风、空气分级燃烧2种燃烧方式下的NOx排放情况进行对比。考察了主燃区温度、二次风配比(以主燃区过量氧气系数表示)、二次风氧浓度等关键因素对NOx排放的影响。结果表明:富氧空气分级燃烧的NOx排放显著低于单级供风燃烧,同时也低于空气分级燃烧的NOx排放。主燃区温度为1 300~1 500℃时,富氧空气分级燃烧的NOx排放减少比例比分级配风燃烧提高了6~12个百分点;富氧空气分级燃烧条件下,随主燃区温度升高,煤粉燃烧更加充分,燃料中N元素分解成NHi、HCN等大量中间产物,使主燃区气氛的还原性增强,被还原的NOx比例增加。因此,NOx排放降低且NOx排放减少比例呈现上升趋势;富氧空气分级燃烧的二次风配比对NOx排放具有显著影响,随着主燃区过量氧气系数的升高,NOx排放均呈现先降低后升高的趋势。因此存在最佳二次风配比,使NOx排放浓度最低。主燃区温度为1 300℃时,最佳主燃区过量氧气系数约为0.58;主燃区温度为1 500℃时,最佳主燃区过量氧气系数约为0.55;在主燃区过量空气系数给定的条件下,提高二次风氧浓度可以延长煤粉颗粒在主燃区的停留时间,并在煤粉颗粒表面形成局部富氧环境,促进煤粉充分燃烧,从而增强主燃区气氛的还原性,降低NOx的生成。因此,当二次风氧浓度为21%~31%时,NOx排放随二次风氧含量的升高而降低。随着二次风氧浓度的逐渐升高,NOx排放的降低趋势逐渐放缓。  相似文献   

17.
针对一实际尺寸的回转窑建立模型,分别进行了空气助燃(21% O2)和二次风富氧(23% O2)燃烧的数值模拟研究。结果表明,二次风富氧后,高温区覆盖形状没有明显变化,仍呈“棒槌状”;在回转窑前端,煤粉挥发分与焦炭燃烧速度加快,整体温度有所提升,最高温度由2386 K增至2427 K,壁面所接收的辐射量得到了提升;但NOx的生成量也大幅度提高,其中出口处NOx由247 mg/m3增至367 mg/m3。考虑到制氧成本问题及NOx排放问题,在二次风中进行富氧燃烧的总体效果不够理想。  相似文献   

18.
煤粉低尘燃烧器内燃烧特性的数值模拟   总被引:1,自引:1,他引:0  
介绍了一种用于中小型工业窑炉的新型煤粉低尘燃烧技术,利用计算机数值模拟考察了煤粉低尘旋流燃烧器的特性. 在合理选择气相流动、固相流动、煤燃烧及NO的生成等模型的同时,针对旋流燃烧场中固体颗粒在壁面附近的碰撞及熔融特性,探讨了煤粉在壁面处的运动模型,并以此为基础考察了燃烧场的两相流动特性,模拟了燃烧器内煤粉的燃烧过程及各物理量的分布. 在与实验比较的基础上,对燃烧器的结构进行了改进. 结果表明,在低化学计量比下,改进后的燃烧器性能更好,颗粒在燃烧器内充分燃尽,在保证液排渣效果的同时,NO的排放远低于常规液排渣旋风器的NO排放量.  相似文献   

19.
针对某双切圆锅炉热角区域高温腐蚀问题,本文提出调节同层二次风流量的方法来改善热角上游的还原性氛围。基于Fluent软件模拟了不同冷角二次风流量工况下的炉内燃烧情况,结果表明:增加冷角二次风量可以基本消除双切圆锅炉水冷壁附近CO体积分数过高(>8%)的区域,大大缓解水冷壁高温腐蚀的问题。5%工况和10%工况下,炉膛近壁面安全区域面积占比分别上升了1.20%和1.35%,出口NO x 平均质量浓度分别升高2.99%和8.89%;而15%工况的炉膛防腐效果最佳,近壁面安全区域面积占比上升了3.60%,同时腐蚀严重区域占比下降了4.99%,出口NO x 平均质量浓度升高较明显,上升18.91%。在一般电厂实际调整过程中,冷角二次风增量应设置在5%~10%,对于燃用高硫煤且NO x 排放较低的电厂,建议将冷角二次风增量设置为15%左右,以最大限度缓解高温腐蚀。  相似文献   

20.
链条炉试烧稻壳成型颗粒的研究   总被引:1,自引:0,他引:1  
研究采用20 t/h供暖链条炉,在不改变锅炉主体结构,并保证锅炉出力的前提下,试烧了稻壳成型颗粒。结果表明:随着生物质颗粒掺烧比的增加,排渣烧失量逐渐降低,排烟中CO浓度升高,排烟温度逐渐升高。其中生物质挥发分在对流受热面中燃烧是造成排烟温度升高的主要原因。燃煤链条锅炉改烧生物质颗粒,应该在锅炉前拱或者喉部增加流量小、压头大、速度高的二次风,增强烟气扰动,从而增强挥发分与空气的混合燃烧,达到减排SO2和节约优质烟煤的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号