首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
将行星差动轮系与液粘制动器相结合设计了1种新型的液粘绞车,介绍了液粘绞车及液粘制动器的结构及工作原理,建立了液粘绞车的数学模型,具有实用价值。  相似文献   

2.
液粘调速离合器是依靠液体剪切力来传递转矩和调节转速的新型传动装置。可作为理想的调速、稳速、功率分配以及柔性启动装置。本文应用流体仿真软件STAR-CCM+对液粘调速离合器摩擦副的内部稳态流场建立模型、生成网格、物理模型参数和边界条件设置、仿真计算,获得流场出口平均油温,并通过试验,验证了仿真计算精度。通过对获得的温度场和流速场分析,发现摩擦片油槽方向对散热效果影响很大,建议结合离合器的旋转方向,对油槽方向进行优化设计。  相似文献   

3.
基于ITAE准则,采用单纯形法对液粘传动PID调节器三个参数进行寻优设计,通过优化使系统性能达到最优。理论分析和仿真计算结果表明,优化后的系统对于减小液粘传动的速度波动,加快响应速度,提高调速性能具有明显的效果。  相似文献   

4.
液粘调速装置是解决式输送机的起动难,停车难以及在高速运行中输送带出现强烈振荡波的理想传动装置。为促进这种新技术,新结构在我国更快发展,本文介绍国内外液粘调速装置的各种结构和在起重运输机械上的应用情况。  相似文献   

5.
将行星差动轮系与液粘制动器相结合设计了1种新型的液粘绞车,对液粘绞车软启动过程进行分析,建立了软启动过程的动力学模型。已知绞车卷筒输出转速时,通过求解动力学模型得到液粘制动器的输出力矩曲线。当绞车启动曲线为Harrision曲线时,液粘制动器的输出力矩按照特定曲线先增大后减小。  相似文献   

6.
液粘调速器是利用摩擦片间的相对滑动来实现无级变速的新型传动装置。由于它的动力传递,转矩改变和转速的调节都是靠液体的粘性来实现的,所以这种传动实质上就是液体的粘性传动。本文将重点阐述这种传动的结构和油膜传动机理。  相似文献   

7.
液粘传动与风机节能   总被引:6,自引:1,他引:6  
介绍了液粘传动的工作原理、液粘调速离合的结构及在调速、同步工况下的理论分析,重点阐述了将液粘调速离合器用于风机的变流量调速运行的优点,得出了具有明显的节能效应和推广前景的结论.  相似文献   

8.
阐述了液粘调速离合器的原理及其在抓斗采矿船动力传动系统上的应用,利用AMESim动力仿真软件对抓斗采矿船的动力传动系统进行建模,调节元件模型参数,优化模型。通过仿真抓斗采矿船的一个典型工作循环,得到了系统的动态性能曲线。通过分析仿真结果,验证了液粘调速离合器的作用效果及模型的有效性。  相似文献   

9.
液粘调速离合器的节能分析与计算   总被引:1,自引:0,他引:1  
对液粘调速离合器的工作原理进行了概述,分析了对风机和水泵的调速节能原理,提出了液粘调速离合器的输入功率的计算公式。并用实例说明如何进行节能计算和项目改造经济分析。  相似文献   

10.
阐述了液粘调速离合器的原理及其在抓斗采矿船动力传动系统上的应用,利用AMESim动力仿真软件对抓斗采矿船的动力传动系统进行建模,调节元件模型参数,优化模型。通过仿真抓斗采矿船的一个典型工作循环,得到了系统的动态性能曲线。通过分析仿真结果,验证了液粘调速离合器的作用效果及模型的有效性。  相似文献   

11.
利用MSC.ADAMS软件建立了液粘软起动多体动力学仿真模型,对该机构进行了运动仿真;对设计方案进行了评估,为设计改进提供了有价值的参考数据。  相似文献   

12.
The velocity,pressure and temperature distributions of the flow in the gap between hydro-viscous drive friction disks are the key parameters in the design of hydro-viscous drive and angular velocity controller.In the previous works dealing with the flow in the gap between disks in hydro-viscous drive,few authors considered the effect of Coriolis force on the flow.The object of this work is to investigate the flow with consideration of the effects of centrifugal force,Coriolis force and variable viscosity.A simplified mathematical model based on steady and laminar flow is presented.An approximate solution to the simplified mathematical model is obtained by using the iteration method assuming that the fluid viscosity remains constant.Then the model considering the effect of variable viscosity is solved by means of computational fluid dynamics code FLUENT.Numerical results of the flow are obtained.It is found that radial velocity profile diverges from the ideal parabolic curve due to inertial forces and tangential velocity profile is nonlinear due to Coriolis force,and pressure has two possible solution branches.In addition,it is found that variable viscosity plays an important role on pressure profiles which are significantly different from those of fluid with constant viscosity.The experimental device designed for this work consists of two disks,and one of them is fixed.Experimental pressure and temperature of the flow within test rig are obtained.It is shown that the trend of numerical results is in agreement with that of experimental ones.The research provides a theoretical foundation for hydro-viscous drive design.  相似文献   

13.
带式输送机液粘软启动装置的特性及其控制   总被引:1,自引:0,他引:1  
给出了液粘力矩传递公式及其特性曲线,分析工作特点并设计出了液粘控制系统,为解决多机拖动系统中功率不平衡问题,提出了基于平均电流的模糊控制方法,并在工程中得到验证。  相似文献   

14.
The current design of hydro-viscous clutch(HVC) in tracked vehicle fan transmission mainly focuses on high-speed and high power. However, the fluid torque under the influence of fluid temperature can not be predicted accurately by conventional mathematical model or experimental research. In order to validate the fluid torque of HVC by taking the viscosity-temperature characteristic of fluid into account, the test rig is designed. The outlet oil temperature is measured and fitted with different rotation speed, oil film thickness, oil flow rate, and inlet oil temperature. Meanwhile, the film torque can be obtained. Based on Navier-Stokes equations and the continuity equation, the mathematical model of fluid torque is proposed in cylindrical coordinate. Iterative method is employed to solve the equations. The radial and tangential speed distribution, radial pressure distribution and theoretical flow rate are determined and analyzed. The models of equivalent radius and fluid torque of friction pairs are introduced. The experimental and theoretical results indicate that tangential speed distribution is mainly determined by the relative rotating speed between the friction plate and the separator disc. However, the radial speed distribution and pressure distribution are dominated by pressure difference at the lower rotating speed. The oil film fills the clearance and the film torque increases with increasing rotating speed. However, when the speed reaches a certain value, the centrifugal force will play an important role on the fluid distribution. The pressure is negative at the outer radius when inlet flow rate is less than theoretical flow, so the film starts to shrink which decreases the film torque sharply. The theoretical fluid torque has good agreement with the experimental data. This research proposes a new fluid torque mathematical model which may predict the film torque under the influence of temperature more accurately.  相似文献   

15.
为了保证液粘软起动装置稳定可靠工作,必须将摩擦片温升控制在允许的范围内,防止摩擦片温升过高变形失效。通过分析推导摩擦片在有滑差情况下产生的热量,减去润滑油能带走的热量,得出摩擦片温升计算公式。通过检测润滑油进、出液粘软起动装置的温度和液粘软起动装置的输出轴转速,利用本文推导的公式可以得出摩擦片的温升。最后用实例进行了仿真分析,验证了摩擦片温升公式的正确性。  相似文献   

16.
结合长距离大功率带式输送机启动时面临的问题,阐述了液体粘性传动装置的组成、工作原理及其性能,同时分析了其存在的问题,在理论分析和试验研究的基础上,提出了能够满足机械设备的可控启动、调速等各种工况要求的集机、电、液一体化的新型液体粘性传动装置。  相似文献   

17.
多点驱动的上运带式输送机起动控制策略   总被引:1,自引:0,他引:1  
从分析上运长距离多点驱动带式输送机起动过程的重要性入手,采用液粘软起动装置和液压自动拉紧装置对输送机的起动过程进行控制。带式输送机的起动方式分为开环和闭环2种,闭环加速曲线采用S形曲线,主、从驱动分别由速度环和电流环进行控制。该控制策略在实际应用中取得了比较满意的效果。  相似文献   

18.
为探究并改善液黏离合器旋转动密封的泄漏特性,采用Tr1-6Kr-22A变速试验台开展其密封性能试验,对比分析操作参数和结构参数对各个泄漏通道泄漏量的影响规律。结果表明:操纵油泄漏量整体偏大,润滑油泄漏通道受压力影响最小;随着操纵油压力的增加,各泄漏通道泄漏量亦随之上升,但高压工况下泄漏量增势平缓;各泄漏通道泄漏量与转速存在正相关关系,但油压对密封泄漏量影响较转速更为明显;密封环带宽度对泄漏量影响较大,较宽的密封环带可有效降低密封总体泄漏量;采用较宽密封环带的试验工装各个通道泄漏量最小,且受操作参数影响较小,适用于压力波动较大的场合,而在转速波动较大时密封泄漏量出现阶跃特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号