首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structural behaviors of foam-insulated concrete sandwich panels subjected to uniform pressure have been evaluated. This study showed that the interface conditions such as composite and non-composite had a significant effect on the response of foam-insulated concrete sandwich panels, indicating that the simulated shear tie resistance should indeed be incorporated in numerical analyses. Finite element models were developed to simulate the detailed shear resistance of connectors and the nonlinear behaviors of concrete, foam and rebar components. The models were then validated using data from static tests performed at the University of Missouri. The modeling approach used here was compatible with the American Concrete Institute (ACI) Code and existing design practices. The results of this study will therefore provide improved methodology for the analysis and design of foam-insulated sandwich panels under both static and blast loadings.  相似文献   

2.
This work presents analytical and finite element analysis (FEA) results of the thermo-mechanical non-linear response of an axi-symmetric circular sandwich plates with a compliant foam core. The study investigates the load–thermal interaction response of a sandwich panel where the properties of the core are temperature dependent and degrade as the temperatures are raised. It presents briefly the governing equations for a sandwich plate based on the principles of the high-order sandwich panel theory (HSAPT) which incorporates the effects of the vertical flexibility of the core material as well as the effects of temperature independent/dependent mechanical properties of the foam core. The effects of the thermal degradation of core material on the thermo-mechanical non-linear response of a simply supported circular sandwich plate are studied through the analytical and FE models. The difficulties involved in non-linear geometrical FE modeling of sandwich panels with a compliant “soft” core with temperature-dependent mechanical properties are discussed. The HSAPT model predictions are compared very well with FE result. An important conclusion of the study is that the interaction between mechanical loads, temperature induced deformations, and degradation of the mechanical properties due to elevated temperatures, may seriously affect the structural integrity of foam cored sandwich plates.  相似文献   

3.
O. Velecela  C. Soutis   《Composites Part B》2007,38(7-8):914-923
This paper describes the use of finite element analysis (FEA) for the simulation of the crushing response of glass reinforced plastic (GRP) composite sandwich panels aimed to absorb collision energy. FEA was employed to predict the failure mode associated with the geometry of a triggering mechanism that was introduced in the foam-cored sandwich panels, and for analyses of the influence of the specimens’ aspect ratio on the specific energy absorption of these panels. The formulated numerical models were found to be effective in reproducing the failure mode and crush zone morphology experimentally observed. The numerical results predicted a trigger geometry that marks the transition from catastrophic buckling failure to progressive crushing and showed that there is not an apparent trend between the aspect ratio of the panels and their specific energy absorption.  相似文献   

4.
Equivalent single and multi degree-of-freedom systems are used to predict low-velocity impact damage of composite sandwich panels by rigid projectiles. The composite sandwich panels are symmetric and consist of orthotropic laminate facesheets and a core with constant crushing resistance. The transient deformation response of the sandwich panels subjected to impact were predicted in a previous paper, and analytical solutions for the impact force and velocity at damage initiation in sandwich panels are presented in this second paper. Several damage initiation modes are considered, including tensile and shear fracture of the top facesheet, core shear failure, and tensile failure of back facesheet. The impact failure modes are similar to static indentation failure modes, but inertial resistance and high strain rate material properties of the facesheets and core influence impact damage loads. Predicted damage initiation loads and impact velocities compare well with experimental results.  相似文献   

5.
Blast impact response of aluminum foam sandwich composites   总被引:1,自引:0,他引:1  
Military and civilian structures can be exposed to intentional or accidental blasts. Aluminum foam sandwich structures are being considered for energy absorption applications in blast resistant cargo containers, ordnance boxes, transformer box pads, etc. This study examines the modeling of aluminum foam sandwich composites subjected to blast loads using LS-DYNA software. The sandwich composite was designed using laminated face sheets (S2 glass/epoxy and aluminum foam core. The aluminum foam core was modeled using an anisotropic material model. The laminated face sheets were modeled using material models that implement the Tsai-Wu and Hashin failure theories. Ablast load was applied using the CONWEP blast equations (*LOAD_BLAST) in LS-DYNA. This paper discusses the blast response of constituent S2-glass/epoxy face sheets, the closed cell aluminum foam core as well as the sandwich composite plate.  相似文献   

6.
A theoretical solution is obtained to predict the dynamic response of peripherally clamped square metallic sandwich panels with either honeycomb core or aluminium foam core under blast loading. In the theoretical analysis, the deformation of sandwich structures is separated into three phases, corresponding to the transfer of impulse to the front face velocity, core crushing and overall structural bending/stretching, respectively. The cellular core is assumed to have a progressive crushing deformation mode in the out-of-plane direction, with a dynamically enhanced plateau stress (for honeycombs). The in-plane strength of the cellular core is assumed unaffected by the out-of-plane compression. By adopting an energy dissipation rate balance approach developed by earlier researchers for monolithic square plates, but incorporating a newly developed yield condition for the sandwich panels in terms of bending moment and membrane force, “upper” and “lower” bounds are obtained for the maximum permanent deflections and response time. Finally, comparative studies are carried out to investigate: (1) influence of the change in the in-plane strength of the core after the out-of-plane compression; (2) performances of a square monolith panel and a square sandwich panel with the same mass per unit area; and (3) analytical models of sandwich beams and circular and square sandwich plates.  相似文献   

7.
鉴于泡沫铝材料良好的吸能特性和三明治型组合构件在强度、刚度上的优势,通过有限元分析软件ANSYS/LS-DYNA对钢板-泡沫铝-钢板三明治型组合板进行了装药量为10.0kgTNT的非接触爆炸数值模拟,考察组合板在爆炸荷载作用下的动力响应。研究表明:钢板夹泡沫铝组合板承受爆炸冲击波荷载时,响应方式主要为组合板整体弯曲变形和泡沫铝芯层局部压缩变形,芯层压缩变形是组合板吸收耗散能量的主要途径;适当地增加泡沫铝芯层厚度和面板厚度能够提高组合板的抗爆性能,同时使组合板充分发挥耗能作用。  相似文献   

8.
Composite sandwich constructions are widely employed in various light weight structures, because composite sandwich panels have high specific stiffness and high specific bending strength compared to solid panels. Since sandwich panels are basically unsuited to carry localized loads, the sandwich structure should provide joining inserts to transfer the localized loads to other structures.In this work, the load transfer characteristics of the partial type insert for composite sandwich panels were investigated experimentally with respect to the insert shape. The static and dynamic pull out tests of the composite sandwich panels composed of an aluminum honeycomb core, two laminates of carbon fiber/epoxy composite and aluminum insert, were performed. From the experiments, the effect of the insert shape on the mechanical characteristics of composite sandwich panels was evaluated.  相似文献   

9.
10.
Buckling loads of sandwich panels obtained by analytical calculations and FE-analysis are compared. Approximate buckling loads for panels with different boundary conditions have been derived using an energy method with deflection functions satisfying the boundary conditions. The comparison shows good agreement for panels with simply supported edges. In other cases the agreement is acceptable for panels with a length/ breadth ratio of 1 or greater. The approximate solutions can thus be used to estimate buckling loads of panels when designing sandwich structures.  相似文献   

11.
Mechanical properties and failure modes of carbon fiber composite egg and pyramidal honeycombs cores under in plane compression were studied in the present paper. An interlocking method was developed for both kinds of three-dimensional honeycombs. Euler or core shear macro-buckling, face wrinkling, face inter-cell buckling, core member crushing and face sheet crushing were considered and theoretical relationships for predicting the failure load associated with each mode were presented. Failure mechanism maps were constructed to predict the failure of these composite sandwich panels subjected to in-plane compression. The response of the sandwich panels under axial compression was measured up to failure. The measured peak loads obtained in the experiments showed a good agreement with the analytical predictions. The finite element method was used to investigate the Euler buckling of sandwich beams made with two different honeycomb cores and the comparisons between two kinds of honeycomb cores were conducted.  相似文献   

12.
A semi-analytical method for bending analysis of corrugated-core, honeycomb-core and X-core sandwich panels is presented. The real displacement of sandwich panels is divided into the global displacement field and local displacement field. The discrete geometric nature of the core is taken into account by treating the core sheets as beams and the sandwich panel as composite structure of plates and beams with proper displacement compatibility. In the global displacement field, the governing equations of these sandwich panels are derived using energy variation principle and solved by employing Fourier series and the Galerkin approach. In the local displacement field, the face sheets under external loads are taken as a multi-span thin plate and the local bending response are then computed. Then the real bending responses are obtained by superposing these bending responses calculated in the two displacement fields and the structural stress fluctuation can be captured. Results from the proposed method agree well with available results in the literature and those from detailed finite element analysis. Furthermore, the mechanical properties of the three kinds of sandwich panels have been compared.  相似文献   

13.
This paper presents details and brief results of an experimental investigation on the response of metallic sandwich panels with stepwise graded aluminum honeycomb cores under blast loading. Based on the experiments, corresponding finite element simulations have been undertaken using the LS-DYNA software. It is observed that the core compression stage was coupled with the fluid–structure interaction stage, and the compression of the core layer decreased from the central to the peripheral zone. The blast resistance capability of sandwich panels was moderately sensitive to the core relative density and graded distribution. For the graded panels with relative density descending core arrangement, the core plastic energy dissipation and the transmitted force attenuation were larger than that of the ungraded ones under the same loading condition. The graded sandwich panels, especially for relative density descending core arrangement, would display a better blast resistance than the ungraded ones at a specific loading region.  相似文献   

14.
A study on the mechanical property degradation of carbon fiber composite sandwich panel with pyramidal truss cores by high temperature exposure is performed. Analytical formulae for the residual bending strength of composite sandwich panel after thermal exposure are presented for possible competing failure modes. The composite sandwich panels were fabricated from unidirectional carbon/epoxy prepreg, and were exposed to different temperatures for different time. The bending properties of the exposed specimens were measured by three-point bending tests. Then the effect of high temperature exposure on the bending properties and damage mechanism were analyzed. The results have shown that the residual bending strength of composite sandwich panels decreased with increasing exposure temperature and time, which was caused by the degradation of the matrix property and fiber-matrix interface property at high temperature. The effect of thermal exposure on failure mode of composite sandwich panel was observed as well. The measured failure loads showed good agreement with the analytical predictions. It is expected that this study can provide useful information on the design and application of carbon fiber composite sandwich panel at high temperature.  相似文献   

15.
《Composites Part A》2007,38(7):1763-1772
A six meter subscale steel truss/composite skin hybrid ship hull model was developed based on an optimized design of a full scale model. The subscale model was finite element analyzed, manufactured and tested under sagging loads. It was made of a welded stainless steel truss to which 60 composite sandwich panels were bonded. The model was loaded to 36% above the design load, at which point there was substantial yielding and residual deformation of the steel truss. However, there was no indication of damage in any of the composite sandwich panels, nor in the bonds between the panels and the steel truss.  相似文献   

16.
The response and energy absorption capacity of cellular sandwich panels that comprises of silk-cotton wood skins and aluminum honeycomb core are studied under quasi-static and low velocity impact loading. Two types of sandwich panels were constructed. The Type-I sandwich panel contains the silk-cotton wood plates (face plates) with their grains oriented to the direction of loading axis and in the case of Type-II sandwich panel, the wood grains were oriented transverse to the loading axis. In both of the above cases, aluminum honeycomb core had its cell axis parallel to the loading direction. The macro-deformation behavior of these panels is studied under quasi-static loading and their energy absorption capacity quantified. A series of low velocity impact tests were conducted and the dynamic data are discussed. The results are then compared with those of quasi-static experiments. It is observed that the energy absorption capacity of cellular sandwich panels increases under dynamic loading when compared with the quasi-static loading conditions. The Type-I sandwich panels tested in this study are found to be the better impact energy absorbers for low velocity impact applications.  相似文献   

17.
This article presents the buckling behaviors of two types of WBK (Wire-woven Bulk Kagome) cored sandwich panels subjected to in-plane compression. Classical theories are introduced, and the experimental and numerical results are presented. The effects of several design parameters are analyzed. For both types, the peak loads were governed by macroplastic buckling. Low shear modulus and strength of the WBK core substantially influenced the buckling behaviors of the sandwich panels before and after their peaks. A small initial deflection greatly decreased the resistance against buckling of the sandwich panels with thinner cores, as confirmed by a two-stage FEA (Finite Element Analysis) and the analytic solution accounting for eccentricity.  相似文献   

18.
开展明胶鸟弹撞击复合材料蜂窝夹芯板试验,研究夹芯结构在软体高速冲击下的损伤形式,分析相关因素对结构动态响应结果的影响。通过CT扫描对复合材料蜂窝夹芯板内部进行检测可知,面板出现分层、基体开裂、纤维断裂、凹陷、向胞内屈曲等损伤形式,蜂窝芯出现芯材压溃、与面板脱粘的损伤形式;分析复合材料蜂窝夹芯板后面板的动态变形过程及撞击中心处位移-时间数据可知,复合材料蜂窝夹芯板在撞击过程中出现由全局弯曲变形主导和局部变形主导的两种变形模式;通过对比不同工况下的复合材料蜂窝夹芯板损伤程度可知,复合材料蜂窝夹芯板损伤程度随鸟弹撞击速度的增加而增大;蜂窝芯高度为10 mm的复合材料蜂窝夹芯板较蜂窝芯高度为5 mm的复合材料蜂窝夹芯板的损伤程度大;初始动能较大的球形鸟弹较圆柱形鸟弹对复合材料蜂窝夹芯板造成的冲击损伤程度更大。   相似文献   

19.
Explosive tests were performed in air to study the dynamic mechanical response of square honeycomb core sandwich panels made from a super-austenitic stainless steel alloy. Tests were conducted at three levels of impulse load on the sandwich panels and solid plates with the same areal density. Impulse was varied by changing the charge weight of the explosive at a constant standoff distance. At the lowest intensity load, significant front face bending and progressive cell wall buckling were observed at the center of the panel closest to the explosion source. Cell wall buckling and core densification increased as the impulse increased. An air blast simulation code was used to determine the blast loads at the front surfaces of the test panels, and these were used as inputs to finite element calculations of the dynamic response of the sandwich structure. Very good agreement was observed between the finite element model predictions of the sandwich panel front and back face displacements and the experimental observations. The model also captured many of the phenomenological details of the core deformation behavior. The honeycomb sandwich panels suffered significantly smaller back face deflections than solid plates of identical mass even though their design was far from optimal for such an application.  相似文献   

20.
This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号