首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
为优化紫苏叶总黄酮的大孔树脂分离纯化工艺,以静态吸附率和解吸率为指标,比较了5种不同大孔树脂对紫苏叶总黄酮的吸附和解吸能力,筛选最优树脂,确定了最佳工艺参数。结果显示,D101型大孔树脂对紫苏叶总黄酮有较好的吸附和解吸效果,最佳条件为样品质量浓度3 mg·mL-1、树脂质量3 g、pH4、50 mL 70%乙醇洗脱。此条件下,紫苏叶总黄酮的纯度为70.90%。  相似文献   

2.
优化大孔吸附树脂纯化橘叶总黄酮的工艺条件,对比考察纯化前后橘叶黄酮的体外抗氧化能力。在单因素试验的基础上,采用响应面法设计优化总黄酮吸附工艺,以吸附率为指标,考察上样液质量浓度、上样液pH值、上样液流速3个因素对吸附效果的影响。并对洗脱剂及其用量进行考察。对比研究橘叶黄酮纯化前后清除羟自由基、DPPH自由基的能力。D101型大孔树脂对橘叶总黄酮纯化的较佳工艺为:上样液质量浓度2 mg/mL,上样液流速1 BV/h,上样液pH 2.5;其他条件为上样液总黄酮量与树脂体积之比为7.7∶1(mg/mL),洗脱剂用量与树脂质量之比为5.6∶1(mL/g)。纯化后,总黄酮含量从4.8%提升至72.8%。同一黄酮浓度下,纯化后体外抗氧化能力均较纯化前强。大孔树脂纯化工艺对橘叶黄酮类成分具有良好的富集作用,且纯化后黄酮是总黄酮中发挥抗氧化能力的主要贡献成分。  相似文献   

3.
以柑橘柠檬苦素为考察指标,研究大孔树脂分离纯化柠檬苦素的工艺条件。结果表明,D101大孔树脂对柑橘柠檬苦素有较好的吸附分离性能,是分离纯化柑橘柠檬苦素的适宜大孔树脂;D101大孔树脂分离纯化柑橘柠檬苦素的最佳工艺条件为:上样流速1 mL/min、上样质量浓度0.5 mg/mL、用 pH 6、80%的乙醇溶液作洗脱剂、洗脱流速2 mL/min。通过树脂回收重复使用,发现D101树脂通过再生处理后,其吸附性能未有明显降低,可以重复使用。采用上述方法得到D101大孔树脂对柠檬苦素的吸附率为88.53%,解吸率为93.47%,得率为82.75%。高效液相色谱检测可知,柠檬苦素的含量达到了92.79%。  相似文献   

4.
以吸附—解吸率和总黄酮含量为考察指标,采用静态和动态吸附两种方法,进行大孔吸附树脂纯化薄荷总黄酮工艺优选。试验考察ADS-7、ADS-17、NKA-9、AB-8、D101、HPD-100六种大孔吸附树脂对薄荷总黄酮的纯化能力。结果表明:AB-8对薄荷总黄酮吸附与分离性能最佳,确定纯化薄荷总黄酮的最佳工艺条件为:流速1mL/min,上样液中薄荷总黄酮质量浓度为2.56 mg/mL,上样量3BV,解析液为4BV 30%乙醇,最终得到含量90.35%的薄荷总黄酮。上述工艺对薄荷总黄酮的分离高效、稳定、可靠,为薄荷资源的综合利用提供理论依据。  相似文献   

5.
为研究美味牛肝菌总黄酮的纯化工艺和体外抗氧化活性,试验比较了4种不同类型大孔树脂的吸附率和解吸率,筛选出适宜分离纯化美味牛肝菌总黄酮的大孔树脂,优化出美味牛肝菌总黄酮的最佳纯化工艺,并评价纯化后总黄酮的体外抗氧化活性。结果表明,D-101大孔树脂适合纯化美味牛肝菌总黄酮,最佳吸附条件为pH6.0、样品浓度3.0mg/mL、上样流速1.0mL/min,解吸条件为乙醇浓度80%、洗脱流速1.0mL/min,黄酮纯度由16.52%提高到49.77%。纯化后美味牛肝菌总黄酮的抗氧化能力显著增强,清除DPPH·、ABTS~+·、·OH和O_2~-·的IC_(50)分别为317.66μg/mL、338.28μg/mL、231.99μg/mL和222.81μg/mL。结果表明,美味牛肝菌总黄酮是一种潜在的食品抗氧化剂,具有良好的市场应用前景。  相似文献   

6.
山楂叶总黄酮的水浸提和纯化工艺研究   总被引:5,自引:0,他引:5  
研究山楂叶总黄酮的水浸提和大孔吸附树脂纯化耦合工艺.重点探讨采用水浸提法提取山楂叶总黄酮的最佳工艺条件.试验结果表明:山楂叶黄酮类化合物的最优水提工艺参数是料液比为1:20(g/mL).浸提时间为120 min,提取次数2次.在此条件下进行回流提取,山楂叶总黄酮的提取率达到87.2%.采用水浸提法与D101型大孔吸附树脂耦合时山楂叶总黄酮进行吸附纯化.该树脂对总黄酮的动态吸附率大于80%,稳定性试验重复次数为5,以体积分数70%乙醇为洗脱剂时解吸率大于86%.山楂叶总黄酮经上述工艺分离纯化后,得率为1.9%,纯度为82.8%.  相似文献   

7.
目的:研究大孔吸附树脂分离纯化桂花总黄酮工艺条件,为桂花总黄酮的工业化生产提供实验依据。方法:以贵州产桂花为原料,以桂花总黄酮吸附量及回收率等为考察指标,选用AB-8型大孔吸附树脂对桂花总黄酮进行分离纯化,分别采用静态试验、动态试验等考察AB-8型大孔树脂对桂花总黄酮的分离纯化最佳工艺条件及效果。结果:pH值、洗脱剂、温度、上柱液浓度、径高比、流速、总黄酮与树脂质量比等工艺条件对桂花总黄酮的吸附洗脱量、回收率等影响甚大。结论:AB-8型大孔树脂分离纯化桂花总黄酮最佳工艺条件为:上柱液pH4~ 5;洗脱剂为70%乙醇,洗脱剂用量为4倍树脂体积,流速3~ 4 mL/min;上柱总黄酮质量与树脂质量比为1:9.4,上柱液总黄酮浓度为17.86 mg/mL,流速2~ 3 mL/min;冲洗杂质用水体积2~ 3 BV,流速2~ 3mL/min;径高比1.5/21.6;温度升高,吸附量下降但洗脱率加大。  相似文献   

8.
为获得高纯度的锥栗壳色素,比较7种大孔吸附树脂(NKA-9、D4020、XAD-7、DA-201、AB-8、X-5、D101)对锥栗壳粗提色素的静态吸附与解吸性能,筛选出最佳的大孔树脂,并通过单因素试验和正交试验考察其最佳的动态吸附工艺条件。结果表明,D101型大孔树脂对锥栗壳粗提色素有较好的吸附和解析效果,其动态吸附纯化的最佳工艺条件为:吸附柱径高比1:10,上样流速1.5 mL/min,上样浓度0.100 mg/mL。利用80%乙醇溶液作为洗脱剂,洗脱流速1.0 mL/min时解吸率最大。采用此纯化及解吸条件,锥栗壳色素的色价从31.2提高至74.3。纯化后的色素易溶解,溶液呈深红棕色、澄清透亮、稳定性好。  相似文献   

9.
张玉  李进  吕海英  张侠  张花丽 《食品科学》2015,36(12):22-28
为纯化准噶尔山楂残渣中的粗多糖,通过动态吸附和洗脱实验从7 种大孔吸附树脂中选出两种最优树脂NKA-9和D101,按一定比例进行混合实验。在单因素试验基础上,利用响应面法确定最佳纯化条件:NKA-9与D101树脂最佳混合质量比为2∶3;最佳吸附工艺条件为上样液流速3.75 mL/min、上样液质量浓度1.32 g/L、树脂径高比1∶13,此条件下多糖的吸附率为60.75%;最佳洗脱工艺条件为洗脱液浓度0.27 mol/L、洗脱液流速3.5 mL/min、洗脱液用量7 BV,此条件下多糖的洗脱率为84.22%。样品中多糖含量由原来的5.06%上升至21.13%。  相似文献   

10.
对大孔树脂纯化榛子壳棕色素的条件进行研究。比较了5种不同类型的树脂对榛子壳棕色素的纯化效果,结果表明D101树脂对榛子壳棕色素的纯化效果最佳。对D101树脂的纯化条件进行了静态实验和动态实验,实验结果表明,样液pH=4.0,样液稀释倍数为25倍,上样体积为110mL,上样流速为1.5~2.0mL/min;洗脱剂为70%的乙醇,洗脱流速为1.5~2.0mL/min,以上为最佳纯化条件。经D101纯化的色素,色价从22.3提高到了46.8。  相似文献   

11.
大叶藻总黄酮的大孔树脂纯化工艺   总被引:1,自引:0,他引:1  
为纯化大叶藻中提取的总黄酮,选择5 种大孔吸附树脂,通过静态吸附和解吸实验,选定两种最优树脂D101-1和AB-8;再将两种树脂进行混合实验,选出混合吸附树脂最优混合比例,最后确定最佳纯化工艺条件:D101-1和AB-8吸附树脂按2∶3比例混合、上样液pH 3、样液质量浓度1.25 mg/mL、洗脱液乙醇体积分数70%,上样量和上样流速分别为6 BV和3 BV/h,洗脱体积和洗脱流速分别为5 BV和3 BV/h条件下进行纯化实验,样液中的总黄酮含量由原来(12.66±0.42)%上升至(51.25±1.26)%。  相似文献   

12.
陈晶  李琪  黄春萍  张晓峰  徐艳  丁然  张宏 《食品科学》2015,36(18):58-63
以枇杷花中总黄酮、总三萜含量作为检测指标,考察D101、AB-8、聚酰胺3 种大孔树脂对枇杷花提取物中总黄酮、总三萜的分离性能,考察4 种不同干燥方法对枇杷花总黄酮、总三萜含量的影响。结果表明,大孔树脂AB-8作为最佳分离树脂,上样量2.1 mL、吸附时间4 h、洗脱速率2 BV/h、洗脱体积3 BV时,枇杷花洗脱液中总黄酮含量为74.82%,收率为76.56%,总三萜含量为15.57%,收率为46.48%;减压干燥作为最佳干燥方法,真空度0.07 MPa、温度45 ℃、干燥时间10 h时,纯化物中总黄酮含量为76.07%,收率为77.87%,总三萜含量为15.89%,收率为47.09%,含水量为4.07%。研究结果表明,此制备工艺可行,为枇杷花总黄酮、总三萜的开发利用提供理论依据。  相似文献   

13.
研究大孔树脂纯化马兰总黄酮树脂吸附特性及工艺条件及参数。文中分别进行静态吸附、静态解吸、静态吸附动力学过程(Lagergren准一级动力学方程)、静态吸附等温曲线(Langmuir和Freundich等温吸附方程)、动态吸附实验,从7种大孔树脂中筛选用于马兰总黄酮分离的最佳树脂,并系统研究最佳大孔树脂分离纯化的吸附性能和最优洗脱参数。结果表明:D101型大孔树脂为分离马兰黄酮类组分最佳树脂,其分离的最佳工艺为总黄酮浓度为9.36 mg/mL的样液,以3 BV/h的流速,控制pH值为4~5上柱,用75%乙醇以3 BV/h用量进行洗脱,可获得样品总黄酮纯度达70%以上。  相似文献   

14.
通过Plackett-Burman试验设计和响应面法确定八角茴香叶黄酮的最佳微波提取条件:乙醇体积分数67%、液料比26∶1、微波温度75 ℃、微波起始功率500 W、微波时间8 min。在此条件下,黄酮的得率为6.97%。采用D101大孔树脂和制备色谱两种方式纯化八角茴香叶黄酮,结果表明制备色谱不仅能够高效快速地纯化八角茴香叶黄酮,并且能够对黄酮成分进行初步分离。  相似文献   

15.
NKA-9大孔树脂纯化香椿叶黄酮类物质工艺优化   总被引:1,自引:0,他引:1  
以香椿叶提取物为原料,以吸附率和解吸率为指标,考察了9种大孔树脂对香椿叶黄酮的吸附与解吸性能,并结合静态吸附动力学,筛选出适宜纯化香椿叶黄酮的大孔树脂为NKA-9。运用静态与动态吸附、解吸实验,研究得出NKA-9纯化香椿叶黄酮的最佳工艺条件为:选取70 m L 7 mg/m L的香椿叶提取物(含Na Cl浓度为3 mol/L),上样流速2 BV/h,用80 m L 60%乙醇溶液(p H 6)为洗脱剂,以2 BV/h的流速洗脱。在该条件下,香椿叶黄酮含量由纯化前81.272 3 mg/g增加到纯化后219.970 2 mg/g。高效液相色谱结果分析表明,芦丁、金丝桃苷、异槲皮苷、槲皮苷、阿福豆苷5种黄酮类单体物质含量均提高到纯化前的3倍以上。该工艺能有效地富集纯化香椿叶黄酮类物质,槲皮苷是此香椿叶黄酮类化合物的主要组分,含量是其他4种单体总量的2倍左右。  相似文献   

16.
吸附树脂对蛹虫草黄酮纯化工艺条件优化   总被引:2,自引:0,他引:2  
以蛹虫草黄酮粗提物为研究对象,分析黄酮纯化过程中树脂种类、上样体积、淋洗液pH值、洗脱液体积分数与体积及树脂重复使用次数多种影响因素,优化吸附树脂对黄酮的分离纯化工艺。通过对AB-8、D-101、NKA-9和NKA-Ⅱ 4 种吸附树脂对蛹虫草黄酮的静态吸附、静态解吸和静态吸附动力学等特性的研究,发现AB-8吸附树脂对蛹虫草黄酮有较高的吸附速率和单位吸附量,且易于解吸,是蛹虫草黄酮分离的理想树脂。通过优化实验,确定AB-8吸附树脂对蛹虫草黄酮分离纯化的最优工艺条件为树脂装柱体积100 mL时,上样体积40.0 mL、黄酮上样量47.536 mg、淋洗和洗脱速率2 BV/h、淋洗液pH 5、洗脱液乙醇体积分数和洗脱体积分别为85%和500 mL,树脂重复使用次数为2 次,在此条件下,蛹虫草黄酮的回收率在65%以上,纯度在17%以上,具有良好的分离纯化效果。  相似文献   

17.
以总黄酮吸附率、解吸率为指标,在单因素试验基础上,利用五因素四水平正交试验研究D-101型大孔吸
附树脂纯化锦灯笼宿萼总黄酮的工艺条件。结果表明:pH 10的锦灯笼宿萼总黄酮提取液、树脂吸附3 h、并用体积
35 倍于树脂质量(解吸液体积/树脂质量)体积分数80%的乙醇溶液解吸7 h时,锦灯笼宿萼浸膏中总黄酮的含量由
11.45%提高到45.56%。  相似文献   

18.
利用单因素试验和正交试验优化了黑果悬钩子(Rubus caesius L.)茎和叶总黄酮的提取工艺,通过清除DPPH自由基、ABTS+·的方法测定了黑果悬钩子茎和叶的抗氧化活性。优化的总黄酮提取工艺为:提取温度80 ℃、提取时间70 min、乙醇溶液体积分数60%、料液比1∶90(g/mL)。通过比较AB-8等14 种大孔树脂对黑果悬钩子茎、叶总黄酮的吸附分离效果,从中筛选出AB-8大孔树脂是理想的吸附剂。通过单因素试验,确定AB-8大孔树脂对黑果悬钩子总黄酮分离纯化的最优工艺为:上样流速1 mL/min、上样液总黄酮质量浓度0.32 mg/mL、上样体积80 mL,吸附饱和平衡后,以40 mL 60%乙醇溶液1.5 mL/min的流速动态洗脱。经AB-8大孔吸附树脂纯化后,提取液的总黄酮含量和抗氧化能力显著提高,叶和茎总黄酮含量为纯化前的1.4 倍和2.4 倍,叶和茎的的ABTS+·清除能力分别为纯化前的1.7 倍和 2.5 倍,DPPH自由基清除能力分别为纯化前的1.7 倍和2.6 倍。这些结果表明:黑果悬钩子叶和茎均具有较高的总黄酮含量和明显的抗氧化活性,是潜在的天然抗氧化剂资源。  相似文献   

19.
为纯化茅岩莓总黄酮,先用HPD-100型大孔吸附树脂(macroporous adsorption resin,MAR)层析柱进行初步纯化,再用聚酰胺(polyamide,PA)层析柱进行第2次纯化,得到的HPD-100型MAR最适宜吸附工艺参数为上样液总黄酮质量浓度6 mg/mL、上样流速1 mL/min、上样液体积130 mL,在此条件下吸附率为97.14%;最适宜解吸工艺参数为洗脱液乙醇体积分数70%、洗脱流速1 mL/min、洗脱液体积40 mL,在此条件下解吸率为94.10%。经HPD-100型MAR纯化后的总黄酮纯度从55.00%提高到了72.25%。PA的最适宜吸附工艺参数为上样液总黄酮质量浓度6 mg/mL、上样流速2 mL/min,在此条件下吸附率为99.57%;最适宜解吸工艺参数为洗脱液乙醇体积分数70%、洗脱流速1 mL/min、洗脱液体积55 mL,在此条件下解吸率为76.50%。经PA纯化后总黄酮纯度从72.25%提高到了80.75%。该方法为茅岩莓黄酮的纯化提供了一种更高效的方法,具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号