首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the mathematical models that were developed to study the UK 2001 foot-and-mouth disease epidemic assumed that the infectiousness of infected premises was constant over their infectious periods. However, there is some controversy over whether this assumption is appropriate. Uncertainty about which farm infected which in 2001 means that the only method to determine if there were trends in farm infectiousness is the fitting of mechanistic mathematical models to the epidemic data. The parameter values that are estimated using this technique, however, may be influenced by missing and inaccurate data. In particular to the UK 2001 epidemic, this includes unreported infectives, inaccurate farm infection dates and unknown farm latent periods. Here, we show that such data degradation prevents successful determination of trends in farm infectiousness.  相似文献   

2.
3.
This paper investigates the early viral dynamics of foot-and-mouth disease (FMD) within infected pigs. Using an existing within-host model, we investigate whether individual variation can be explained by the effect of the initial dose of FMD virus. To do this, we consider the experimental data on the concentration of FMD virus genomes in the blood (viral load). In this experiment, 12 pigs were inoculated with one of three different doses of FMD virus: low; medium; or high. Measurements of the viral load were recorded over a time course of approximately 11 days for every 8 hours. The model is a set of deterministic differential equations with the following variables: viral load; virus in the interstitial space; and the proportion of epithelial cells available for infection, infected and uninfected. The model was fitted to the data for each animal individually and also simultaneously over all animals varying only the initial dose. We show that the general trend in the data can be explained by varying only the initial dose. The higher the initial dose the earlier the development of a detectable viral load.  相似文献   

4.
During the 2001 foot and mouth disease epidemic in the UK, initial dissemination of the disease to widespread geographical regions was attributed to livestock movement, especially of sheep. In response, recording schemes to provide accurate data describing the movement of large livestock in Great Britain (GB) were introduced. Using these data, we reconstruct directed contact networks within the sheep industry and identify key epidemiological properties of these networks. There is clear seasonality in sheep movements, with a peak of intense activity in August and September and an associated high risk of a large epidemic. The high correlation between the in and out degree of nodes favours disease transmission. However, the contact networks were largely dissasortative: highly connected nodes mostly connect to nodes with few contacts, effectively slowing the spread of disease. This is a result of bipartite-like network properties, with most links occurring between highly active markets and less active farms. When comparing sheep movement networks (SMNs) to randomly generated networks with the same number of nodes and node degrees, despite structural differences (such as disassortativity and higher frequency of even path lengths in the SMNs), the characteristic path lengths within the SMNs are close to values computed from the corresponding random networks, showing that SMNs have 'small-world'-like properties. Using the network properties, we show that targeted biosecurity or surveillance at highly connected nodes would be highly effective in preventing a large and widespread epidemic.  相似文献   

5.
In networks, nodes may preferentially contact other nodes with similar (assortatively mixed) or dissimilar (disassortatively mixed) numbers of contacts. Different patterns of contact support different epidemic dynamics, potentially affecting the efficacy of control measures such as contact tracing, which aims to identify and isolate nodes with infectious contacts. We used stochastic simulations to investigate the effects of mixing patterns on epidemic dynamics and contact-tracing efficacy. For uncontrolled epidemics, outbreaks occur at lower infection rates for more assortatively mixed networks, with faster initial epidemic growth rate and shorter epidemic duration than for disassortatively mixed networks. Contact tracing performs better for assortative mixing where epidemic size is large and tracing rate low, but it performs better for disassortative mixing at higher contact rates. For assortatively mixed networks, disease spreads first to highly connected nodes, but this is balanced by contact tracing quickly identifying these same nodes. The converse is true for disassortative mixing, where both disease and tracing are less likely to target highly connected nodes. For small epidemics, contact tracing is more effective on disassortative networks due to the greater resilience of assortative networks to link removal. Multi-step contact tracing is more effective than single-step tracing for assortative mixing, but this effect is smaller for disassortatively mixed networks.  相似文献   

6.
Since 1998 bluetongue virus (BTV), which causes bluetongue, a non-contagious, insect-borne infectious disease of ruminants, has expanded northwards in Europe in an unprecedented series of incursions, suggesting that there is a risk to the large and valuable British livestock industry. The basic reproduction number, R(0), provides a powerful tool with which to assess the level of risk posed by a disease. In this paper, we compute R(0) for BTV in a population comprising two host species, cattle and sheep. Estimates for each parameter which influences R(0) were obtained from the published literature, using those applicable to the UK situation wherever possible. Moreover, explicit temperature dependence was included for those parameters for which it had been quantified. Uncertainty and sensitivity analyses based on Latin hypercube sampling and partial rank correlation coefficients identified temperature, the probability of transmission from host to vector and the vector to host ratio as being most important in determining the magnitude of R(0). The importance of temperature reflects the fact that it influences many processes involved in the transmission of BTV and, in particular, the biting rate, the extrinsic incubation period and the vector mortality rate.  相似文献   

7.
8.
Zhang  Guiyang 《Scientometrics》2021,126(9):7811-7836
Scientometrics - Drawing on a dynamic approach, increasing research investigates network dynamics at the inter-firm level in recent years. However, little is known about intra-firm employee network...  相似文献   

9.
Territoriality in animal populations creates spatial structure that is thought to naturally buffer disease invasion. Often, however, territorial populations also include highly mobile, non-residential individuals that potentially serve as disease superspreaders. Using long-term data from the Serengeti Lion Project, we characterize the contact network structure of a territorial wildlife population and address the epidemiological impact of nomadic individuals. As expected, pride contacts are dominated by interactions with neighbouring prides and interspersed by encounters with nomads as they wander throughout the ecosystem. Yet the pride–pride network also includes occasional long-range contacts between prides, making it surprisingly small world and vulnerable to epidemics, even without nomads. While nomads increase both the local and global connectivity of the network, their epidemiological impact is marginal, particularly for diseases with short infectious periods like canine distemper virus. Thus, territoriality in Serengeti lions may be less protective and non-residents less important for disease transmission than previously considered.  相似文献   

10.
We develop a model of scientific creativity and test it in the field of rare diseases. Our model is based on the results of an in-depth case study of the Rett Syndrome. Archival analysis, bibliometric techniques and expert surveys are combined with network analysis to identify the most creative scientists. First, we compare alternative measures of generative and combinatorial creativity. Then, we generalize our results in a stochastic model of socio-semantic network evolution. The model predictions are tested with an extended set of rare diseases. We find that new scientific collaborations among experts in a field enhance combinatorial creativity. Instead, high entry rates of novices are negatively related to generative creativity. By expanding the set of useful concepts, creative scientists gain in centrality. At the same time, by increasing their centrality in the scientific community, scientists can replicate and generalize their results, thus contributing to a scientific paradigm.  相似文献   

11.
Infection with Mycobacterium tuberculosis leads to tuberculosis (TB) disease by one of the three possible routes: primary progression after a recent infection; re-activation of a latent infection; or exogenous re-infection of a previously infected individual. Recent studies show that optimal TB control strategies may vary depending on the predominant route to disease in a specific population. It is therefore important for public health policy makers to understand the relative frequency of each type of TB within specific epidemiological scenarios. Although molecular epidemiologic tools have been used to estimate the relative contribution of recent transmission and re-activation to the burden of TB disease, it is not possible to use these techniques to distinguish between primary disease and re-infection on a population level. Current estimates of the contribution of re-infection therefore rely on mathematical models which identify the parameters most consistent with epidemiological data; these studies find that exogenous re-infection is important only when TB incidence is high. A basic assumption of these models is that people in a population are all equally likely to come into contact with an infectious case. However, theoretical studies demonstrate that the social and spatial structure can strongly influence the dynamics of infectious disease transmission. Here, we use a network model of TB transmission to evaluate the impact of non-homogeneous mixing on the relative contribution of re-infection over realistic epidemic trajectories. In contrast to the findings of previous models, our results suggest that re-infection may be important in communities where the average disease incidence is moderate or low as the force of infection can be unevenly distributed in the population. These results have important implications for the development of TB control strategies.  相似文献   

12.
Abnormal cerebrospinal fluid (CSF) flow is suspected to be a contributor to the pathogenesis of neurodegenerative diseases such as Alzheimer''s through the accumulation of toxic metabolites, and to the malfunction of intracranial pressure regulation, possibly through disruption of neuroendocrine communication. For the understanding of transport processes involved in either, knowledge of in vivo CSF dynamics is important. We present a three-dimensional, transient, subject-specific computational analysis of CSF flow in the human cranial subarachnoid space (SAS) based on in vivo magnetic resonance imaging. We observed large variations in the spatial distribution of flow velocities with a temporal peak of 5 cm s−1 in the anterior SAS and less than 4 mm s−1 in the superior part. This could reflect dissimilar flushing requirements of brain areas that may show differences in susceptibility to pathological CSF flow. Our methods can be used to compare the transport of metabolites and neuroendocrine substances in healthy and diseased brains.  相似文献   

13.
The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.  相似文献   

14.
This study aims at detecting the role of individual journals and uncovering structural patterns of information flow among scientific journals in a cross-citation network, using different bibliometric indicators and statistical methods of data analysis. Beyond measuring the individual journals’ position within the communication network, we shed light on their cognitive background as well. Language barrier and lacking internationality proved one of the main hindrances for integration into the communication network. Moreover, some document types hinder journals from establishing self-links. Against our expectations, we have found a clear divergence between strongly interlinked and high-entropy journals. Furthermore, the analysis of strong links among different fields allows the detection of high-interdisciplinary journals.  相似文献   

15.
The arachnoid membrane (AM) and granulations (AGs) are important in cerebrospinal fluid (CSF) homeostasis, regulating intracranial pressure in health and disease. We offer a functional perspective of the human AM''s transport mechanism to clarify the role of AM in the movement of CSF and metabolites. Using cultures of human AG cells and a specialized perfusion system, we have shown that this in vitro model mimics the in vivo characteristics of unidirectional fluid transport and we present the first report of serum-free permeability values (92.5 µl min−1 mm Hg−1 cm−2), which in turn are in agreement with the CSF outflow rates derived from a dynamic, in vivo magnetic resonance imaging-based computational model of the subarachnoid cranial space (130.9 µl min−1 mm Hg−1 cm−2). Lucifer yellow permeability experiments have verified the maintenance of tight junctions by the arachnoidal cells with a peak occurring around 21 days post-seeding, which is when all perfusion experiments were conducted. Addition of ruthenium red to the perfusate, and subsequent analysis of its distribution post-perfusion, has verified the passage of perfusate via both paracellular and transcellular mechanisms with intracellular vacuoles of approximately 1 µm in diameter being the predominant transport mechanism. The comparison of the computational and in vitro models is the first report to measure human CSF dynamics functionally and structurally, enabling the development of innovative approaches to modify CSF outflow and will change concepts and management of neurodegenerative diseases resulting from CSF stagnation.  相似文献   

16.
Diffusion is a particle transportation process beginning from one point of a system to another through random molecular motion. This process depends on various parameters like temperature, concentration gradient, and particle size. The objective of this article is to assess the variation of diffusion coefficients of water molecules, chloride and sodium ions against different temperatures in calcium silicate hydrates (C-S-H) through molecular dynamics simulation. A uniform sodium chloride solution is modeled between cement hydrate layers with no concentration gradient. In such a solution, temperature could affect diffusion process in a significant manner. The two most important crystalline mineral analogues of C-S-H, tobermorite and jennite, are applied in this simulation. Diffusion coefficients of different ions and water molecules are found in different temperatures. It is revealed that diffusion coefficient is higher at high temperatures. Activation energies of chloride and sodium ions transport in cement hydrates are calculated through Arrhenius law. Output values of diffusion coefficients and activation energies are compared to previous experimental and simulation results in the related literature. A multi-scale analysis is run to estimate the penetration depth of \(\mbox{Cl}^{-}\) ions in cement paste through Fick’s second law.  相似文献   

17.
18.
19.
This paper analyses driving behaviour in car-following conditions, based on extensive individual vehicle data collected during experimental field surveys carried out in Italy and the UK. The aim is to contribute to identify simple evidence to be exploited in the ongoing process of driving assistance and automation which, in turn, would reduce rear-end crashes. In particular, identification of differences and similarities in observed car-following behaviours for different samples of drivers could justify common tuning, at a European or worldwide level, of a technological solution aimed at active safety, or, in the event of differences, could suggest the most critical aspects to be taken into account for localisation or customisation of driving assistance solutions. Without intending to be exhaustive, this paper moves one step in this direction. Indeed, driving behaviour and human errors are considered to be among the main crash contributory factors, and a promising approach for safety improvement is the progressive introduction of increasing levels of driving automation in next-generation vehicles, according to the active/preventive safety approach. However, the more advanced the system, the more complex will be the integration in the vehicle, and the interaction with the driver may sometimes become unproductive, or risky, should the driver be removed from the driving control loop. Thus, implementation of these systems will require the interaction of human driving logics with automation logics and then an enhanced ability in modelling drivers’ behaviour. This will allow both higher active-safety levels and higher user acceptance to be achieved, thus ensuring that the driver is always in the control loop, even if his/her role is limited to supervising the automatic logic. Currently, the driving mode most targeted by driving assistance systems is longitudinal driving. This is required in various driving conditions, among which car-following assumes key importance because of the huge number of rear-end crashes.The increased availability of lower-cost information and communication technologies (ICTs) has enhanced the possibility of collecting copious and reliable car-following individual vehicle data. In this work, data collected from three different experiments, two carried out in Italy and one in the UK, are analysed and compared. The experiments involved 146 drivers (105 Italian drivers and 41 UK drivers). Data were collected by two instrumented vehicles.Our analysis focused on inter-vehicular spacing in equilibrium car-following conditions. We observed that (i) the adopted equilibrium spacing can be fitted using lognormal distributions, (ii) the adopted equilibrium spacing increases with speed, and (iii) the dispersion between drivers increases with speed. In addition, according to different headway thresholds (up to 1 second) a significant number of potentially dangerous behaviours is observed.Three different car-following paradigms are also applied to each of the experiments, and modelling parameters are calibrated and compared to obtain indirect confirmation about the observed similarities and differences in driving behaviour.  相似文献   

20.
Infection of individual cells with more than one HIV particle is an important feature of HIV replication, which may contribute to HIV pathogenesis via the occurrence of recombination, viral complementation and other outcomes that influence HIV replication and evolutionary dynamics. A previous mathematical model of co-infection has shown that the number of cells infected with i viruses correlates with the ith power of the singly infected cell population, and this has partly been observed in experiments. This model, however, assumed that virus spread from cell to cell occurs only via free virus particles, and that viruses and cells mix perfectly. Here, we introduce a cellular automaton model that takes into account different modes of virus spread among cells, including cell to cell transmission via the virological synapse, and spatially constrained virus spread. In these scenarios, it is found that the number of multiply infected cells correlates linearly with the number of singly infected cells, meaning that co-infection plays a greater role at lower virus loads. The model further indicates that current experimental systems that are used to study co-infection dynamics fail to reflect the true dynamics of multiply infected cells under these specific assumptions, and that new experimental techniques need to be designed to distinguish between the different assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号