首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monophasic mullite precursors with composition of 3Al2O3·2SiO2 (3:2) were synthesized and then were sintered by Spark Plasma Sintering (SPS) to form transparent mullite ceramics. The precursor powders were calcined at 1100 °C for 2 h. The sintering was carried out by heating the sample to 1450 °C, holding for 10 min. The sintered body obtained a relative bulk density of above 97.5% and an infrared transmittance of 75–82% in wavelength of 2.5–4.3 μm without any additive. When the precursor powders were calcined at below 1100 °C, it was unfavorable for completely eliminating the residual OH, H2O and organic compound. However, when calcined temperature was too high, it was unfavorable either for full densification due to the absence of viscous flow of amorphous phase. At the same calcined temperature, the transmittance of sintered body was decreased with the increase of the sintering temperature above 1450 °C owing to the elongated grain growth.  相似文献   

2.
《Ceramics International》2016,42(4):5319-5325
Investigations of the high-pressure sintered nanocrystalline mullite powder are presented. The synthesized mullite powder with crystallite size of 51 nm was densified by using high-pressure “anvil-type with hollows” apparatus at 4 GPa over the temperature range of 1100–1500 °C in 100 °C steps. The phase composition and structural parameters of the densified samples were studied as a function of densification temperature. The XRD analysis revealed the appearance of new phases, such as kyanite and corundum, whose development affected the densities of the sintered samples. High relative densities of the sintered samples were obtained because of the application of high pressure. The needle-like microstructure was developed owing to the anisotropic grain growth of mullite. The elongated mullite grains reached the length of approximately 5 µm at 1400 °C, whereas the grains treated at 1500 °C became thicker preserving the same needle length. The Vickers microhardness of the developed microstructures increased with the increase of temperature up to 1400 °C, while at 1500 °C it was slightly reduced due to the grain coarsening.  相似文献   

3.
Lead-free KNbO3 (KN) powder was fabricated by sol–gel process from metal alkoxides. KN precursor solutions were prepared by different preparation conditions such as the order of reflux process for alkoxides and the kinds of solvent. KN powders were sintered at 900 °C with a heating rate of 10 °C/min. Single phase KN powder was obtained using precursor solution prepared by reflux at 120 °C. We considered that the crystallinity of KN powder was affected by the dimer in Nb-pentaethoxide of the starting chemicals. On the other hand, grain shape of the KN powder also depended on the existence of secondary phase K4Nb6O17, and the grain size of the fine powder fabricated from precursor solution prepared by reflux at 80 °C using 2-methoxethanol and ethanol solvents was estimated to be about 500 nm and 1 μm, respectively.  相似文献   

4.
High purity calcined carbonaceous kaolin and α-Al2O3 powders were employed to prepare porous mullite ceramics (Sample A) using graphite as pore former with the reaction sintering method. For the purpose of comparison, porous mullite ceramics (Sample B) was also fabricated from the uncalcined carbonaceous clay incorporated with α-Al2O3 powders. Mullitization in the two samples was both nearly complete at 1500 °C, despite the fact that calcination of the clay remarkably depressed mullitization and promoted the formation of glass phase. The Sample A sintered at 1500 °C fractured mainly in an intergranular way, while the Sample B mainly underwent transgranular fracture. The experimental results revealed that densification behavior/open porosity of the Sample A was far more sensitive to sintering temperature. The pore size of the Sample A as well as the Sample B sintered at 1500 °C was in a narrower range of 0.3–5 μm.  相似文献   

5.
In the present work, Al2O3–20 wt%Al2TiO5 composite was prepared from reaction sintering of alumina and titania nanopowders. The nano-sized raw powders were reconstituted into nanostructured particles by ball milling. Then, the nanostructured reconstituted powders were pressed and pressureless-sintered into bulk ceramics at 1300, 1400, 1500 °C for 2 h. The phase composition and microstructures of reconstituted powders and as-prepared ceramic composites were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope and energy-dispersive spectrometer (EDS). The microstructural analysis of the ceramic showed that the average grain size of the alumina–aluminium titanate composite increases with increasing the temperature. Also, SEM proved the existence of a proper interface between Al2TiO5 and Al2O3 grains and preferential distribution of aluminium titanate particles in the grain boundaries. XRD analysis indicated the absence of rutile titania in the sintered composite ensuring complete formation of aluminium titanate. The hardness of the samples sintered at 1300, 1400, 1500 °C were 4.8, 6.2 and 8.5 GPa, respectively.  相似文献   

6.
This paper shows the results of the solid-state synthesis of mullite from spent catalysts discarded from fluid catalytic cracking (FCC); the catalysts are mainly composed of silica and alumina but are polluted with SOX, forming a non-crystalline network. The synthesized mullite was used as a feedstock to thermally spray a coating onto a silica-alumina refractory brick, and its chemical resistance at high temperature was subsequently evaluated by contact with K2CO3 at 950 °C. Initially, the spent catalyst was thermally treated for 2 h at 600, 900, and 1200 °C to eliminate the SOX pollutant. The heat treatment at 1200 °C completely removed the SOX in the sample. Additionally, four thermal processes were performed by heating the spent FCC catalyst in an electrical furnace to 1500 and 1600 °C and by using an oxyacetylene flame to synthesize mullite. Thermal treatments at 1500 °C were performed with and without alumina added to the spent FCC catalyst, whereas those conducted at 1600 °C and using a flame were performed using only added alumina. In the powders thermally treated at 1500 °C, silica-rich mullite (3Al2O3.2SiO2) accompanied by an excess of alumina or silica was obtained with or without alumina added, respectively. In contrast, the materials treated at 1600 °C formed alumina-rich mullite (2Al2O3.SiO2), which was accompanied by an excess of alumina. Mullite was not synthesized in the flame-heated powder. The silica-rich mullite accompanied by an excess of alumina was used as feedstock powder to modify the surface of a refractory brick, improving its resistance to chemical attack by K2CO3 at high temperature.  相似文献   

7.
Dense silicon carbide ceramics using chemical treated powder by DCC via dispersant reaction method and liquid phase sintering was reported. Ammonium peroxydisulfate ((NH4)2S2O8) and ammonium carbonate ((NH4)2CO3) were used as acid and base solutions to treat the silicon carbide powder, respectively. Influence of silicon carbide powder with chemical treatment on the preparation of silicon carbide suspension was studied. It was indicated that 50 vol% and 52 vol% silicon carbide suspensions with viscosities of 0.71 Pa s and 0.80 Pa s could be prepared using acid and base treated powders. Influence of silicon carbide powder with chemical treatment on the coagulation process and properties of green bodies and sintered ceramics were studied. It was indicated that silicon carbide green bodies with compressive strength of 1.13 MPa could be prepared using base treated powder. Dense silicon carbide ceramics with relative density above 99.3% and flexural strength of 697 ± 30 MPa had been prepared by DCC via dispersant reaction and liquid phase sintering using Al2O3 and Y2O3 as additives at 1950 °C for 2 h.  相似文献   

8.
Single phase mullite gels with composition 2Al2O3·SiO2 (2:1) were prepared by the slow hydrolysis method using aluminium nitrate nonahydrate and tetraethylorthosilicate as reagents. The evolution to mullite from gels was studied by infrared (IR) spectroscopy and X-ray diffraction (XRD). Gels thermally treated under fast schedules showed mullite formation below 900 °C. Compositional and microstructural changes in 2:1 mullites through the range of temperature from 900 to 1600 °C were determined by the measurement of lattice parameters and field emission scanning electron microscopy. The alumina-rich mullites formed at low temperatures become almost the nominal 2:1 at 1600 °C. This result is consistent with available thermodynamic data for mullite formation from alumina and silica. Microstructural examination indicated an almost constant grain size for mullite from 900 to 1600 °C.  相似文献   

9.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

10.
A kaolin containing muscovite and quartz (K-SZ) and a pure kaolin (K-SX) with the addition of potassium feldspar, K2SO4 and quartz, respectively, were used to investigate the influences of muscovite and quartz on the formation of mullite from kaolinite in the temperature range 1000–1500 °C. In K-SZ formation of mullite began at 1100 °C, and in K-SX at 1000 °C. In K-SZ quartz accelerated the formation of cristobalite and restrained the reaction of mullite and silica. Muscovite in K-SZ acted as a fluxing agent for silica and mullite before 1400 °C and accelerated the formation of cristobalite. The FTIR band at 896.8 cm 1 was used to monitor the formation of orthorhombic mullite.  相似文献   

11.
Using non-aqueous Pechini method, Pb(Zr0.95Ti0.05)O3 powders were prepared at low temperature by one-step pyrolysis process. The polymeric gels and powders were characterized using a range of techniques, such as DTG, XRD, SEM, Raman spectroscopy, and laser particle size distribution. The perovskite phase was formed at about 350–400 °C and some oxocarbonate impurities can be detected in all samples after calcining at 400–850 °C by one-step pyrolysis process. Phase pure and porous Pb(Zr0.95Ti0.05)O3 ceramics were obtained without pore formers from the powders by one-step pyrolysis process at 500 °C for 4 h. The relative densities were 87%, 91% and 94% for the ceramics sintered at 1100, 1150 and 1200 °C for 2 h, respectively. The porous ceramics sintered at 1200 °C for 2 h have homogeneously dispersed pores and fine-grain structures with an individual grain size of 0.7–2 μm.  相似文献   

12.
A BaSnO3 powder with a crystallite size of 27.6 nm has been prepared through a hydrothermal reaction of a peptised SnO2·xH2O and Ba(OH)2 at 250 °C and the following crystallization of this hydrothermal product at 330 °C. The peptisation of the SnO2·xH2O gel is dependent on the pH value. Through peptisation the mean particle size of SnO2·xH2O in the aqueous solution has been decreased by a factor of 100 to 8 nm. A limited agglomeration in the sol-prepared powder has been observed under the microscope. The structure evolution and crystallisation behaviours of the sol-prepared powders were investigated by TG-DTA, IR and XRD. The BaSn(OH)6 phase in the as-prepared powder transforms into an amorphous phase at 260 °C, from which the BaSnO3 particles nucleate and grow with an increase in temperature. The single-phase BaSnO3 powder has been obtained at a temperature as low as 330 °C. This sol-prepared powder is more sinter-reactive than the gel-prepared powder and can be sintered to a ceramic with 90.7% of the theoretic density.  相似文献   

13.
The sintering behavior of nanocrystalline orthorhombic mullite powders was investigated. The changes in microstructure, mechanical and dielectric properties with two different heating rates were explained. Microstructural characteristics depending on heating rate were explained at different sintering temperatures. Dielectric properties of prepared mullite nanocomposites were studied to examine the synthesized mullite ceramics as high permittivity materials in the microwave range. It was indicated that a sharp decrease in bulk density was observed at 1600 °C due to the exaggerated growth of mullite grains. Moreover, a maximum hardness value of 4.97 GPa was obtained at 1600 °C with slow heating rate (5 °min?1). The DC electrical resistivity with a slow heating rate at 1300 °C was approximately three times the value of the mullite sample sintered with a fast heating rate (30 °min?1). The minimum dielectric loss of about 0.017 at 1.5 GHz was achieved at a sintering temperature of 1500 °C with a slow heating rate.  相似文献   

14.
A nano-structured mesoporous yttria-stabilized zirconia (YSZ) powders were prepared for the first time using cetyltrimethylammonium bromide (CTAB) as the surfactant and urea as the hydrolyzing agent and using ZrO(NO3)·6H2O and Y(NO3)3·6H2O as inorganic precursors. The Brunauer–Emmett–Teller (BET) surface area, Barrett–Joyner–Halender (BJH) pore size distribution and crystallite/particle size of mesoporous YSZ varied with calcine temperatures were studied. Characterizations revealed that the mesoporous YSZ powder calcined at 600 °C was weakly agglomerated and had a high surface area of 137 m2/g with an average grain size of ∼5.8 nm. It was demonstrated that the mesoporous structure remained up to 900 °C. The low-densified YSZ sample with porosity as high as 33% was prepared from mesoporous YSZ powder sintered at 1500 °C for 6 h.  相似文献   

15.
Ceramic mullite–SiC nanocomposites were successfully produced at temperatures below 1500 °C by the polymer pyrolysis technique. An alumina-filled poly(methylsilsesquioxane) compound was prepared by mechanically mixing and cross-linking via a catalyst prior to pyrolysis. Heat treatment of warm pressed alumina/polymer bulk samples under the exclusion of oxygen (inert argon atmosphere) up to 1500 °C initiated crystallization of mullite even at pyrolysis temperatures as low as 1300 °C. The influence of the filler and of the pyrolysis temperature on the crystallization behavior of the materials has been investigated. Based on thermal analysis in combination with elemental analysis and X-ray powder diffraction studies four polymer mixtures differing in type and content of nano-alumina powders were examined. Nano-sized γ-Al2O3 powders functionalized at the surface by octylsilane groups proved to be more reactive towards the preceramic polymer leading to the formation of a larger weight fraction of mullite crystals at lower processing temperatures (1300 °C) as compared to native nano-γ-Al2O3 filler. Moreover, the functionalized nano-alumina particles offer an enhanced homogeneity of the distribution of alumina nano-particles in the starting polysiloxane system. In consequence, the received ceramic samples exhibited a nano-microstructure consisting of crystals of mullite with an average dimension in the range of 60–160 nm and silicon carbide crystals in the range of 1–8 nm.  相似文献   

16.
Transparent Nd:YAG ceramics were fabricated by solid-state reactive sintering of Y2O3, α-Al2O3 and Nd2O3 powders with TEOS and MgO as sintering aids. The powders were ball-milled, dried, sieved and calcined at different temperatures. Samples sintered at 1745 °C for 10 h were utilized to observe the microstructure and the optical transmission. It is found that heat treatments of the powder mixtures above 600 °C for 1 h are necessary to remove the carbon contamination but below 800 °C for 4 h can avoid strong aggregation of the powder. So there is a room for heat-treatment, between 600 °C and 800 °C that can obtain Nd:YAG ceramics with almost pore-free microstructures and high transparency. Highly transparent Nd:YAG ceramic with 84.3% in-line transmission at 1064 nm was fabricated by sintering the 800 °C-1 h-heat-treated powder mixture at 1745 °C for 50 h. Even at wavelength of 400 nm, the transmittance of the sample reached 82.9% and the optical scattering coefficient was as low as 0.71% cm−1.  相似文献   

17.
Fine-sized La2O3–B2O3–TiO2 glass powders with spherical shape were directly prepared by spray pyrolysis at a temperature of 1500 °C. The optimum flow rate of the carrier gas to prepare the glass powders with dense inner structure and fine size by complete melting was 10 L/min. The ratio of La/Ti was identified to be 2.06:1, which was close to the original starting ratio of La/Ti in mixture of the spray solution. The Tg and Tc of the powders were 614 and 718 °C. The crystal structures within the powders were observed from the sintered disc at 630 °C. The mean sizes of the powders changed from 0.24 to 0.71 μm when the concentrations of the spray solution were changed from 0.025 to 0.5 M. The BET surface areas of the powders changed from 4.4 to 1.6 m2/g. The grain sizes of the sintered discs increased with increasing the sintering temperatures. The main crystal structure of the sintered discs was LaBO3.  相似文献   

18.
Gadolinia doped ceria (GDC) powders with different gadolinium contents were successfully prepared by the thermal decomposition of ceria complexes. All the calcined powder samples were found to be ceria-based solid-solutions having a fluorite-type structure. The powders were cold-isostatically pressed and sintered in air at 1500 °C for 5 h to attain a sintered density of about 90% of its theoretical value. The electrical conductivity of the GDC pellets in air was studied as a function of temperature in the 225–700 °C range, by using two-probe electrochemical impedance spectroscopy measurements. The highest total conductivity (σ600 °C = 0.025 S/cm) was found for the Ce0.85Gd0.15O1.925 composition.  相似文献   

19.
For the first time orthorhombic mullite nanoparticles (12 nm) have been synthesized via the co-precipitation technique using mixture of sodium aluminate and sodium silicate solutions as monophasic salts at low annealing temperature 1000 °C. The AC and DC electrical properties of the sintered mullite ceramics were investigated. The results indicated the precursor directly transformed to 3:2 molar ratio orthorhombic mullite. Meanwhile, the surface area of the produced o-mullite at 1000 °C was 15.1 m2/g which increased to 37.3 m2/g with addition of CTAB as a cationic surfactant. TEM images investigated that the microstructure was changed from rod-like shape to roughly spherical shape with addition of surfactant. The DC electrical resistivity of mullite sample sintered at 1600 °C was 16 times greater than that sintered at 1300 °C. The minimum dielectric loss value of 0.014 was obtained at 1600 °C sintering temperature at 1.5 MHz.  相似文献   

20.
A process of recycling used abrasive SiC powder after grinding Si wafer was proposed to raw powder for sintering. The used SiC powder could be successfully converted to composite powders consisting of SiC particle and Si3N4 whisker via a heat treatment in N2 atmosphere, in which iron oxide acted as a catalyst in the vapor–liquid–solid (VLS) formation of Si3N4. With the addition of 3 mass% Al2O3 and 1 mass% Y2O3, the composite powders sintered at 1900 °C for 2 h exhibited a 3-point bending strength of 626 ± 48 MPa and a fracture toughness of 3.9 ± 0.1 MPa m1/2, which were significantly enhanced as compared with those of using recovered powder merely composed of SiC particle. The strength and fracture toughness of the sintered material could be improved by optimization of chemical and heat treatment parameters and controlling the amount of sintering additives and hot pressing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号