首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Si3N4–ZrN wear-resistant self-healing composite material was developed. Si3N4–ZrN composite ultrafine powders were synthesized at a temperature of 1200 °С via solid-state reactions without milling and densified by spark plasma sintering at 1650 °C to a relative density of 97 ± 0.5%. Balls 13.494 mm in diameter for ball bearings manufactured by spark plasma sintering had a fine-grained structure with a grain size of 200–500 nm, Vickers hardness of 22.5 ± 1.8 GPa, and indentation fracture toughness of 6.2 ± 0.4 MPa. The tribological properties of the composite were investigated under static and dynamic loading. The self-healing capability of the Si3N4–ZrN composite was evaluated in the temperature range 500–550 °С. High-temperature three-point bending tests of notched specimens showed a bending strength of 383 ± 21 MPa at room temperature and 413 ± 30 MPa at 500 °С, which confirmed the self-healing of the composite.  相似文献   

2.
《Ceramics International》2020,46(13):20885-20895
The spark plasma sintering process was implemented to produce four different composites, namely Ti-10 wt% Mo-(0.5, 1, 2, and 4) wt% (TiB2 + TiC). All samples were sintered at 1300 °C for 5 min under 50 MPa. A full study was carried out on the mechanical properties and the relative density of these SPSed composite samples. The best relative density of around 98.7% was related to the sample with 1 wt% (TiB2 + TiC). The role of relative density was so predominant that the best values for all mechanical properties, i.e., bending strength, hardness, elongation, and ultimate tensile strength (UTS), were achieved for those with the highest relative density values. The formation of the in-situ TiB phase was proved by the XRD analysis. Besides, microscopical investigations (optical and SEM) showed that adding more ceramic additives led to an increased amount of porosity while Mo solubility decreased in the titanium matrix. Finally, different fracture modes on the surfaces of composite samples were studied using SEM images.  相似文献   

3.
4.
Tantalum carbide (TaC) nanopowders were synthesized by a novel method combining the sol–gel and spark plasma sintering (SPS) processes using tantalum pentachloride (TaCl5) and phenolic resin as the sources of tantalum (Ta) and carbon (C), respectively. Gels of Ta-containing chelate with good uniformity and high stability were prepared by solution-based processing. The products with the structure of carbon-coated tantalum pentoxide (Ta2O5) were obtained after pyrolysis at 800?°C. Further heat treatment by SPS resulted in the fast formation of TaC at a relatively low temperature. The effects of the C/Ta molar ratio in the raw materials and the heat treatment temperature on the prepared powders were investigated. With increase in the C/Ta molar ratio from 3.75 to 4.25, the synthesis temperature, oxygen content and average crystallite size of the TaC powders decreased. Furthermore, the oxygen content of the powders prepared at the C/Ta molar ratio of 4.25 could be reduce by increasing the heat treatment temperature from 1400° to 1600°C, which unfortunately also induced a mean crystallite size increase from 30 to 100?nm. The TaC powders obtained at a comparatively low C/Ta molar ratios of 4.25 at 1500?°C had an average particle size of about 50?nm and a low oxygen content of about 0.43?wt%.  相似文献   

5.
ZrB2–SiC composites were fabricated by spark plasma sintering (SPS) using TaSi2 as sintering additive. The volume content of SiC was in a range of 10–30% and that of TaSi2 was 10–20% in the initial compositions. The composites could be densified at 1600 °C and the core–shell structure with the core being ZrB2 and the shell containing both Ta and Zr as (Zr,Ta)B2 appeared in the samples. When the sintering temperature was increased up to 1800 °C, only (Zr,Ta)B2 and SiC phases could be detected in the samples and the core–shell structure disappeared. Generally, the composites with core–shell structure and fine-grained microstructure showed the higher electrical conductivity and Vickers hardness. The completely solid soluted composites with coarse-grained microstructure had the higher thermal conductivity and Young's modulus.  相似文献   

6.
The aim of this work was the analysis of the experimental results of a transparent alumina (BMA15) ceramic which was fabricated by Spark Plasma Sintering (SPS) from nanopowder (BMA15, Baikowski Chimie, France), at different temperatures (1200°C, 1250°C, 1300°C). With the application of a maximum uniaxial pressure of 73 MPa during all the fabrication-cycle (more than 3 hours). We sought an optimal sintering temperature combining better optical and mechanical properties of our pellets. The sintered alumina (BMA15) has a crystalline and dense microstructure. The samples sintered at 1200°C exhibit the best optical properties, in particular: good real inline transmission (RIT) and an optical gap greater than those of the samples sintered at 1250°C and 1300°C. Due to their low density, the Young modulus of alumina sintered at 1200 °C, deduced by ultrasound, has a low value which is about 385 GPa. Similarly, its small grain size gives it a better Vickers hardness ~ 21 GPa. Therefore, the value of the coefficient of friction μ stabilizes around the mean value of 0.21.  相似文献   

7.
TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–2573 K. Effects of TiN and TiB2 content on relative density, microstructure, and mechanical properties were investigated. Above 2373 K, TiN–TiB2 composites exhibited relative densities over 95%. A high density of 99.7% was obtained at 2573 K with 20–30 vol% TiB2. Shrinkage of the TiN–70 vol% TiB2 composite was the highest at 1573–2473 K. For the TiN–70 vol% TiB2 composite prepared at 1973–2373 K, TiN grains were small, while at 2573 K, TiB2 became a continuous matrix, in which irregular-shaped TiN dispersed. hBN was formed in the TiN–TiB2 composite containing 50–60 vol% TiB2 above 2373 K. The maximum Vickers hardness and fracture toughness obtained for the TiN–80 vol% TiB2 composite sintered at 2473 K was 26.3 GPa and 4.5 MPa m1/2, respectively.  相似文献   

8.
《Ceramics International》2016,42(13):14867-14872
A two-step process (milling and then heat treatment) was used for the preparation of α-Si3N4 nanopowder. The influence of the milling time and heat treatment temperature as processing parameters were investigated on the formation of α-Si3N4. Silicon nitride ceramic was produced by spark plasma sintering at 1700 °C for 15 min, using MgSiN2 additive. The optimum sample was produced in a 30 h milling time, heat treatment at 1300 °C, and a 22 °C/min heating rate conditions. X-ray fluorescence analysis showed that the purity of the final product is above 98%. Nanoindentation hardness and Young’s modulus of the SPS-ed sample were measured as 17±2.0 GPa and 290±11.0 GPa, respectively.  相似文献   

9.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

10.
We report the synthesis of a new class of Al2O3–WC nanocomposites for the first time by using metal–organic chemical vapor deposition process in a spouted bed followed by spark plasma sintering technique. The microstructure and mechanical properties of these prepared nanocomposites have been analyzed for various sintering parameters. From microstructure observation, it is found that the nanosized WC particles are dispersed within alumina matrix grains and intergrains. The microstructure of transgranular and step-wise fracture surface are found in these nanocomposites. The basic mechanical properties like density, hardness, and toughness also have been analyzed and the results are interpreted by correlating with that of corresponding microstructures.  相似文献   

11.
cBN–TiN–TiB2 composites were fabricated by spark plasma sintering at 1773–1973 K using cubic boron nitride (cBN) and SiO2-coated cBN (cBN(SiO2)) powders. The effect of SiO2 coating, cBN content and sintering temperature on the phase composition, densification and mechanical properties of the composites was investigated. SiO2 coating on cBN powder retarded the phase transformation of cBN in the composites up to 1873 K and facilitated viscous sintering that promoted the densification of the composites. Sintering at 1873 K, without the SiO2 coating, caused the relative density and Vickers hardness of the composite to linearly decrease from 96.2% to 79.8% and from 25.3 to 4.4 GPa, respectively, whereas the cBN(SiO2)–TiN–TiB2 composites maintained high relative density (91.0–96.2%) and Vickers hardness (17.9–21.0 GPa) up to 50 vol% cBN. The cBN(SiO2)–TiN–TiB2 composites had high thermal conductivity (60 W m−1 K−1 at room temperature) comparable to the TiN–TiB2 binary composite.  相似文献   

12.
Carbon nanotube–iron–mullite nanocomposite powders were prepared by a direct method involving a reduction in H2–CH4 and without any mechanical mixing step. The carbon nanotubes are mostly double- and few-walled (3–6 walls). Some carbon nanofibers are also observed. The materials were consolidated by spark plasma sintering. Their electrical conductivity is 2.4 S/cm whereas pure mullite is insulating. There is no increase in fracture strength, but the SENB toughness is twice than the one for unreinforced mullite (3.3 vs. 1.6 MPa m1/2). The mechanisms of carbon nanotube bundle pullout and large-scale crack-bridging have been evidenced.  相似文献   

13.
Highly dense AlN–SiC composites with various SiC additions (0–50?wt-%) were fabricated at 1800°C by plasma activated sintering. The effect of SiC addition on structural, thermal and dielectric properties as well as microwave absorbing performance of the composites was investigated. The thermal conductivity decreases with increasing SiC addition, from 68.7 W (m?K)?1 for 0?wt-% SiC to 19.38?W (m?K)?1 for 50?wt-% SiC. On the contrary, the permittivity and dielectric loss increase gradually, from 7.6–8.5 to 22–26.7 and from 0.02–0.1 to 0.2–0.53, respectively. AlN–SiC composite with better thermal and dielectric properties in 30?wt-% SiC, whose thermal conductivity and dielectric loss are found to be 24.88?W (m?K)?1 and 0.15–0.74, respectively. Furthermore, the composite exhibits microwave absorbing performance with the minimum reflection loss (RL) of ?16.5 dB at 15.5 GHz and the frequency range of 2.6 GHz for RL below ?10 dB (90% absorption).  相似文献   

14.
Dense TiN–TiB2 composites were prepared by spark plasma sintering at 2573 K using TiN and TiB2 powders. With increasing TiN content from 60 to 90 vol%, the c-axis length of TiB2 in the TiN–TiB2 composites decreased from the stoichiometric value (0.3230 nm) to 0.3227 nm because of B deficiency in TiB2, whereas the a-axis length of TiB2 was unchanged from the stoichiometric value of 0.3031 nm. The lattice parameter of TiN increased from the stoichiometric value (0.4243 nm) to 0.4250 nm with increasing TiB2 content from 0 to 60 vol% because of B solid solution in TiN.  相似文献   

15.
In this study, B4C–SiC–rGO composites with different SiC contents were prepared by spark plasma sintering at 1800 °C for 5 min under a uniaxial pressure of 50 MPa. The effects of SiC on the microstructures and mechanical properties of the B4C–SiC–rGO composites were investigated. The optimal values for flexural strength (545.25 ± 23 MPa) and fracture toughness (5.72 ± 0.13 MPa·m1/2) were obtained simultaneously when 15 wt.% SiC was added to 5 wt.%–GO reinforced B4C composites (BS15G5). It was found that SiC and rGO inhibited the grain growth of B4C and improved the mechanical properties of the B4C–SiC–rGO composites. The clear and narrow grain boundaries of rGO–B4C and rGO–SiC, as well as the semi-coherent B4C–SiC interface, indicated strong interface compatibility. The twin structures of SiC and B4C observed in the composites improved their fracture toughness. Crack deflection and crack bridging caused by the SiC grains as well as rGO bridging and rGO pull-out were observed on the crack propagation path.  相似文献   

16.
Electroconductive ZrO2–Al2O3–25 vol% TiN ceramic nanocomposites were prepared by spark plasma sintering at 1200 °C for 3 min. The electrical resistivity of the composites decreased from 4.5 × 10?4 Ω m to 3 × 10?5 Ω m as the Al2O3 content in the ZrO2–Al2O3 matrix increased from 0 to 100 vol%. SEM images graphically presented the microstructural evolution of the composites and a geometrical percolation model was applied to investigate the relationship between the electrical property and the microstructure. The results indicated that the addition of Al2O3 to ZrO2–TiN improved the electrical conductivity of the material by tailoring the structure from “nano–nano” type for ZrO2–TiN to “micro–nano” type for ZrO2–Al2O3–TiN.  相似文献   

17.
Investigated was the spark plasma sintering (SPS) of β-SiAlON/0–30 wt % BN ceramic composites. The raw materials (β-Si5AlON7 and BN powders) were prepared by infiltration-mediated combustion synthesis (CS). Experimentally established were the following process parameters for SPS of composites with high relative density (>95%) and flexural strength of 250–300 MPa: (a) heating rate 50 deg/min, (b) maximum temperature 1650–1750°C, (c) and holding time 5 min.  相似文献   

18.
Si3N4–TiN–SiC composites were synthesized from TiSi2 and SiC mixtures via the combustion reaction under high nitrogen pressure. The nitridation mechanism of TiSi2 was analyzed. The results show that the nitridation of TiSi2 produced TiN and Si firstly, and Si3N4 phase was formed by the further nitriding of Si. The molten eutectic phase and its agglomeration between Si and TiSi2 formed one core-shell structure and affected the nitridation process. Under higher nitrogen pressure, the nitridation reaction was complete and the relatively dense Si3N4–TiN–SiC composites obtained. TEM observation revealed inhomogeneous Si3N4 grain size, amorphous phase, cavities, microcracks and dislocations, and graphite from the nitridation of SiC in the microstructure.  相似文献   

19.
Dense ZrB2–SiC composite was synthesized by spark plasma sintering with 10 vol.% TaSi2 additive. When sintered at 1600 °C, core–shell structure was found existing in the sample. The core was ZrB2 and the shell was (Zr,Ta)B2 solid solution. This result was ascribed to the decomposition of TaSi2 and the solid solution of Ta atoms into ZrB2 grains. The solid solution process probably decreased the boride grain boundary active energy, contributing to the formation of coherent structure of grain boundaries. Additionally, the existence of dislocations in the boride grains indicated that the applied pressure also imposed an important effect on the densification of composite. When sintered at 1800 °C, owing to the atom diffusion, Ta atoms homogeneously distributed in the boride grains, leading to the disappearance of core–shell structure. The boundaries between (Zr,Ta)B2 grains, as well as between boride grains and SiC particles, were still clear without amorphous phase existing.  相似文献   

20.
《Ceramics International》2022,48(2):1916-1925
The phase formation behavior of β′-SiAlON with the general formula Si6-zAlzOzN8-z was studied comprehensively for z values from 1 to 3 using spark plasma sintering (SPS) as the consolidation technique at synthesis temperatures from 1400 to 1700 °C. The samples were prepared close to the β′-SiAlON composition line: Si3N4 ? 4/3(AlN·Al2O3) in the phase diagram using (A) nano-sized amorphous Si3N4 and (B) micro-sized β-Si3N4 precursors. Field-emission scanning electron microscopy (FESEM) was used for microstructural analysis.Most compositions reached almost full density at all SPS temperatures. Compared with the micro-sized β-Si3N4 precursor, the nano-sized amorphous Si3N4 precursor accelerated the reaction kinetics, promoting the formation of dense β′-SiAlON + O′-SiAlON composites after SPS at synthesis temperatures of 1400–1500 °C. This resulted in very high values of Vickers hardness (Hv10) = 18.2–19.2 GPa for the z = 1 composition related to the hardness of the O′-SiAlON component phase.In general, for samples synthesized from nano-sized amorphous Si3N4, which were almost fully dense, containing >95% β′-SiAlON, the hardness values were 13.4–13.8 GPa with a fracture toughness of 3.5–4.6 MPa m1/2. For equivalent samples synthesized from micro-sized β-Si3N4, hardness was in the range 13.9–14.4 GPa with a fracture toughness of 4.3–4.5 MPa.m1/2. These values are comparable with fully dense β′-SiAlONs, usually containing intergranular glass phase which has been sintered by HIP and other processes at much higher temperatures for longer times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号