首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiferroic materials of BiFeO3–BaTiO3 solid solution have been fabricated in order to improve ferromagnetic and ferroelectric properties. The effects of La (1 mol%) and K (varied from 0.5–5 mol%) doped 0.75BiFeO3–0.25BaTiO3 on phase formation, ferromagnetic and ferroelectric properties have been investigated and discussed. The rhombohedral perovskite phase of specimens was characterized by XRD technique. Fracture morphology reveals the grain growth characteristics with increasing K content. (La, K)-doped 0.75BiFeO3–0.25BaTiO3 with La=1 mol% and K=3 mol% exhibits the highest remnant polarization and remnant magnetization.  相似文献   

2.
Dielectric properties and ferroelectric domain configurations of multiferroic xBaTiO3–(1 ? x)BiFeO3 (x = 0.10–0.33) solid solutions synthesized by conventional solid-state reaction, were reported. A structural transition from rhombohedral to pseudo-cubic structures appeared around x = 0.33, and the formation of impurity phase of Bi2Fe4O9 was effectively depressed by doping BaTiO3. Dielectric constants of xBaTiO3–(1 ? x)BiFeO3 solid solutions decreased with increasing the frequency, and the degree of decrease was related to the doping content of BaTiO3. Transmission electron microscopy images revealed that the ferroelectric domain configurations in the multiferroic BiFeO3–BaTiO3 solid solutions with rhombohedral symmetry, exhibited a wavy character whereas a predominant intricate domain structure with fluctuating mottled contrast was observed in the multiferroic BiFeO3–BaTiO3 solid solution with pseudo-cubic phase structure. The presence of 1/2{1 1 1} superlattice spots in the selected area electron diffraction patterns taken from the multiferroic BiFeO3–BaTiO3 solid solutions with rhombohedral symmetry indicated that the ordered regions have a doubled perovskite unit cell.  相似文献   

3.
The goal of this study is to fabricate perovskite type ferroelectric particles-dispersed ceramic nanocomposites though conventional hot-pressing or pulse electric current sintering (PECS). This type of nanocomposite is expected to show ferroelectricity or piezoelectricity with retaining mechanical properties. Magnesia (MgO) and barium titanate (BaTiO3) were selected as a matrix and secondary phase dispersoid. From X-ray diffraction analysis, the BaTiO3 was the phase compatible with the MgO matrix, and there were no reaction phases between the matrix and BaTiO3. It was found that the BaTiO3 enhanced the sinterability of the MgO ceramics. Relative density of pure MgO was lower than 80%, while dense MgO/10 vol% BaTiO3 nanocomposites could be successfully prepared by sintering at 1200°C for 10 min through PECS method. Fine BaTiO3 particles were homogeneously dispersed within the MgO matrix grain as well as at grain boundaries. Sintering behavior and microstructure development of the MgO/BaTiO3 nanocomposites were discussed in terms of BaTiO3 content and sintering temperatures.  相似文献   

4.
《Ceramics International》2015,41(6):7453-7460
Previously published results on electrical and mechanical properties of BaTiO3 coatings prepared by atmospheric plasma spraying showed anomalies in their dielectric response. This paper provides a study of electrical and mechanical properties of BaTiO3 coatings after thermal posttreatment. The spraying was carried out by a direct current gas-stabilized plasma gun. BaTiO3 was fed into the plasma jet as a feedstock powder prepared by reactive sintering of micrometer-sized powders of BaCO3 and TiO2. In the next step the coatings were annealed in air. Microstructure and phase composition are reported and discussed in relation to electric and mechanical properties. Dielectric properties are reported for the radio frequency (RF) range.  相似文献   

5.
The solid solutions of BiFeO3–BaTiO3 have been prepared via solid state with a view to obtaining magnetoelectric properties, i.e. ferroelectric and magnetic activity in the same range of temperatures. Optimum calcination and sintering strategy for obtaining pure perovskite phase, dense ceramics (>97% relative density) and homogeneous microstructures have been determined. The sample of composition 0.7BiFeO3–0.3BaTiO3 reported in the present work is pseudo-cubic at room temperature. The permittivity is ɛr ≈ 150 at the room temperature and shows a broad ferro-para phase transition at around 175 °C where ɛr  1600. This diffuse maximum of the permittivity, similar to that in relaxors, is due to the chemical inhomogeneity in both A and B sites of the perovskite unit cell ABO3. Higher losses, tan δ > 1, appear above 200 °C and other different conduction mechanisms start to be active particularly at temperatures higher than 400 °C, when the ceramic becomes conductive. The magnetic properties show a succession of transitions from weak ferro/ferrimagnetism-to-antiferromagnetism and antiferromagnetism-to-paramagnetism at TN1  10 K and TN2  265 K. Below TN2 the ceramic 0.7BiFeO3–0.3BaTiO3 can present magnetoelectric coupling, due to the fact that is simultaneously ferroelectric and antiferromagnetic.  相似文献   

6.
The (0.94–x)Bi0.5Na0.5TiO3–0.06BaTiO3–x(Sr0.7Bi0.20.1)TiO3 (BNT–BT–xSBT, 0  x  0.24) solid solution ceramics were synthesized via a conventional solid–state reaction method and the correlation of phase structure, piezoelectric, ferroelectric properties and electrocaloric effect (ECE) was investigated in detail. The ECE in lead–free BNT–BT–xSBT ceramics was measured directly using a home–made adiabatic calorimeter with maximum adiabatic temperature change ΔT = 0.4 K with x = 0.08 under the electric field E = 6 kV/mm at room temperature. The position of maximum ECE was found in the vicinity of nonergodic and ergodic phase boundary, where the maximum change in entropy occurs as a result of the field–induced phase transformation between the ergodic and long–range ferroelectric phase. Besides, the mechanism for the shift of ECE peak is discussed in detail. Finally, the temperature dependence of ECE for BNT–BT–xSBT (x = 0, 0.04 and 0.08) was also investigated. This work may present a guideline for designing BNT–based ferroelectric relaxor ceramics for EC cooling technologies.  相似文献   

7.
Ceramic materials with a perovskite related structures such as non-doped and doped barium titanate ceramics are attracting much interest for their application as capacitor dielectrics, resistors, thermal sensors, etc. Since mechanical activation can be used in order to modify properties of these materials, in this study microstructure evolution and electric properties of mechanically activated BaTiO3 have been analyzed. The sintering process of high purity non-doped mechanically activated BaTiO3 was monitored using a sensitive dilatometer with a heating rate of 10 °C/min. Investigation of the microstructure evolution of mechanically activated BaTiO3 was performed using scanning electron microscope (SEM) and digital pattern recognition (DPR) methods. A dielectric study of the paraelectric–ferroelectric phase transition in the barium titanate ceramics was performed by recording the temperature dependence of dielectric permittivity.  相似文献   

8.
A new ternary lead-free (0.67-x)BiFeO3-0.33BaTiO3-xLa(Mg1/2Ti1/2)O3 ferroelectric ceramic exhibited an obvious evolution of dielectric relaxation behavior. A significantly enhanced energy-storage property was observed at room temperature, showing a good energy-storage density of 1.66 J/cm3 at 13 kV/mm and a relatively high energy-storage efficiency of 82% at x = 0.06. This was basically ascribed to the formation of a slim polarization-electric field hysteresis loop, in which a high saturated polarization Pmax and a rather small remnant polarization Pr were simultaneously obtained. Particularly, its energy storage properties were found to depend weakly on frequency (0.2 Hz–100 Hz), and also to exhibit a good stability against temperature (25 °C–180 °C). The achievement of these characteristics was attributed to both a rapid response of the electric field induced reversible ergodic relaxor to long-range ferroelectric phase transition and a typical diffuse phase transformation process in the dielectric maxima.  相似文献   

9.
Magneto-electric coupling in ceramic composites formed by ferroelectric and ferromagnetic phases can be obtained via an adequate mechanical coupling between the individual piezoelectric and magnetostrictive phases (product property). In the present work, the possibility of forming diphase ferroelectric–ferromagnetic ceramics has been investigated. Composites of xBaTiO3–(1  x)Ni0.5Zn0.5Fe2O4 with x = 0.5, 0.6 and 0.7 were prepared according two different procedures: (i) by direct mixing powders of perovskite BaTiO3 and Ni0.5Zn0.5Fe2O4 spinel prepared by solid state and (ii) by coprecipitating FeIII–NiII–ZnII nitric salts in a NaOH solution in which the BaTiO3 powders were previously dispersed. Optimum processing parameters for good homogeneity, densification and for a reduction of the chemical reactions at the interfaces ferroelectric-ferrite were found. A temperature and composition-dependent magnetic order is present in all the composites, with a dilution effect of the magnetisation due to the presence of the non-ferromagnetic phase. A diffuse ferroelectric–paraelectric transition due to the BaTiO3 phase was identified by the temperature-dependence of the permittivity and losses, showing that at room temperature the material preserves a ferroelectric order. The interfaces play important roles in the dielectric properties, causing space charge effects and Maxwell–Wagner relaxation, particularly at low frequencies and high temperatures. The combined ferroelectric and magnetic ordering will result in magneto-electric coupling in this material; further investigations are necessary.  相似文献   

10.
BiFeO3-based materials are expected to have both ferroelectricity and ferromagnetism simultaneously. In this study, effects of Na-doping (0.5, 1.0, 3.0, and 5.0 mol%) on ferromagnetic and ferroelectric properties of 0.75BiFeO3–0.25BaTiO3 ceramics which have been fabricated by the solid state reaction technique are studied. The effects of Na-doped 0.75BiFeO3–0.25BaTiO3 ceramics on the crystal structure, and magnetic and electrical properties were investigated and discussed. Rhombohedrally distorted 0.75BiFeO3–0.25BaTiO3 showed weak ferromagnetic and ferroelectric properties. In addition, ferroelectric and ferromagnetic properties of 0.75BiFeO3–0.25BaTiO3 have been controlled by Na doping, and the maximum values of magnetization and polarization were observed at 5.0 mol%.  相似文献   

11.
Electroceramics with ferropiezoelectric and ferri-ferromagnetic properties have been studied. These ceramics consist of two phases, a ferroelectric one (commercial BaTiO3) and a ferromagnetic one (MFe2O4, with M = Ni, Zn, Co, obtained through co-precipitation methods), which are later mixed using mechanical milling. A characterization of the previous phases is made by means of electronic microscopy and X-ray diffraction. The results of the magnetic, electric, ferroelectric and piezoelectrical response of the different compound compositions are obtained. The coexistence of phases is made clear, with a greater magnetic response in the samples of ferrite with Co and a greater piezoelectric in the samples of ferrite with Ni. These results are analysed, and the potential of the use of different mixtures is discussed.  相似文献   

12.
Multiferroic BiFeO3?BaTiO3 thin films that simultaneously exhibit ferroelectricity and ferromagnetism at room temperature were prepared by chemical solution deposition. Perovskite single-phase 0.7BiFeO3?0.3BaTiO3 thin films were successfully fabricated in the temperature range 600–700 °C on Pt/TiOx/SiO2/Si substrates. As the crystallization temperature was increased, grain growth proceeded, resulting in higher crystallinity at 700 °C. Although the 0.7BiFeO3?0.3BaTiO3 thin films exhibited poor polarization (P)?electric field (E) hysteresis loops owing to their low insulating resistance. The leakage current at high applied fields was effectively reduced by Mn doping at the Fe site of the 0.7BiFeO3?0.3BaTiO3 thin films, leading to improved ferroelectric properties. The 5 mol% Mn-doped 0.7BiFeO3?0.3BaTiO3 thin films simultaneously exhibited ferroelectric polarization and ferromagnetic magnetization hysteresis loops at room temperature.  相似文献   

13.
《Ceramics International》2016,42(9):11275-11284
Commercially available austenic stainless steel substrate was coated with commercially available, raw Al2O3 powder applied by means of plasma spraying method and then re-melted with CO2 laser beam of various parameters. Tribological and mechanical properties of the 120 J/mm and 160 J/mm laser re-melted coatings were compared with the tribological and mechanical properties of the “as-sprayed” coating. The influence of the laser beam of various parameters on the microstructure, phase constituents, and mechanical and tribological properties of the ceramic coating was investigated by means of scanning electron microscopy, light microscopy, computer tomography, X-ray diffraction technique and nanoindentation tests. The micro sliding wear performance of the coatings was tested using a nanoindenter. The study showed an improvement of the mechanical and tribological properties caused by the laser treatment. The best results were achieved for coating re-melted with 120 J/mm laser beam.  相似文献   

14.
《Ceramics International》2017,43(18):16548-16554
Titanium carbonitride (TiCN) coatings were successfully fabricated by reactive plasma spraying (RPS) from agglomerated Ti-graphite feedstock. The effect of Ti particle size on the microstructure and phase composition of plasma sprayed TiCN coatings was investigated. The Vickers microhardness of coatings was measured by a Microhardness Test and the corresponding Weibull distribution were also analyzed. In addition, a pin-on-disk tribometer was employed to determine the trobological properties of coatings. Results show that all the coatings consist of TiCxN1−x (0 ≤ x ≤1) and minor Ti2O phases, and the amount of Ti2O increases with the increase of Ti particle size. The Weibull distribution of Vickers microhardness of all the coatings shows apparent scattering, while the coating sprayed with Ti particle size of 28 µm exhibits a relatively even distribution. Compared with the coating sprayed with Ti particle size of 14 µm or 48 µm, the coating sprayed with Ti particle size of 28 µm exhibits improved mechanical and tribological properties, which are attributed to the high microhardness and strong bonding strength.  相似文献   

15.
Barium titanate/silicon nitride (BaTiO3/xSi3N4) powder (when x = 0, 0.1, 0.5, 1 and 3 wt%) were prepared by solid-state mixed-oxide method and sintered at 1400 °C for 2 h. X-ray diffraction result suggested that tetragonality (c/a) of the BaTiO3/xSi3N4 ceramics increased with increasing content of Si3N4. Density and grain size of BaTiO3/xSi3N4 ceramic were found to increase for small addition (i.e. 0.1 and 0.5 wt%) of Si3N4 mainly due to the presence of liquid phase during sintering. BaTiO3 ceramics containing such amount of Si3N4 also showed improved dielectric and ferroelectric properties.  相似文献   

16.
《Ceramics International》2016,42(7):8488-8494
The dielectric, pyroelectric and ferroelectric properties of bilayered BaTiO3/BaTi0.8Zr0.2O3 ceramics are described and correlated with their microstructure. Different sintering times are employed to change the microstructure and promote interdiffusion between the layers. The effects of constrained sintering on both compositions are analyzed and their properties are compared to that of single phase BaTiO3 and BaTi0.8Zr0.2O3 ceramics. The results show that, at sintering times until 2 h, the bilayer properties are predominantly affected by the presence of residual stresses. Only after 4 h sintering, the properties are predominantly affected by interdiffusion between the layers.  相似文献   

17.
BaTiO3–(Ni0.5Zn0.5)Fe2O4 composites prepared by co-precipitation were investigated. The macroscopic magnetic properties derived from the magnetic phase (low coercivity, almost no M(H) hysteretic behavior and high permeability) are preserved in the composite. The dielectric properties are strongly influenced by interface phenomena (Maxwell-Wagner), due to the local electrical inhomogeneity. At low frequencies, the composites present thermally activated conductivity and relaxation, while at 1 MHz permittivity of around 500 and tan δ < 8% is obtained at room temperature. The multiferroic character was demonstrated at nanoscale by the presence of the magnetic and ferroelectric domain structure in the same region. Imprint polarisation in the regions corresponding to the ferroelectric phase is found, as result of an internal electrical field created at the interfaces between the (Ni,Zn)-ferrite and BaTiO3 regions.  相似文献   

18.
This paper presents a comparison of properties of BaTiO3 ceramics prepared by two different production methods: gas-stabilized plasma spraying (GSP) and spark plasma sintering (SPS). Samples of both materials were evaluated by various techniques, the goal being to detect the Curie temperature of the ferroelectric transformation between the tetragonal and the cubic phase. All tests, resonant ultrasound spectroscopy, dielectric measurements, differential scanning calorimetry and temperature-resolved X-ray diffraction (XRD), used in combination, proved the absence of this transformation in the case of GSP coating up to 500 °C. Similarly, the tetragonal-to-orthorhombic transition temperature is shifted downwards, this transition probably taking place in a small fraction of the volume of coating. The SPS samples exhibit several anomalies, such as a strong anisotropy of relative permittivity, but their phase transformations were detected in the usual temperature ranges.  相似文献   

19.
《Ceramics International》2017,43(6):4858-4865
Nanorods of lanthanum phosphate obtained by a wet chemical precipitation route were granulated to obtain sizes in the range of 10–15 µm by spray drying from aqueous slurry of 35 wt% solid loading and 2 wt% of PVA binder. The powders thus obtained displayed enhanced flowability and were plasma sprayed on to stainless steel substrates resulting in the formation of adherent coatings of 150–180 µm thickness. These coatings were characterized using electron microscopy, X-ray diffraction analysis and Raman spectroscopy. X-ray analysis indicated phase instability of LaPO4 during plasma spraying resulting in the formation of oxy and polyphosphates of lanthanum (La2P4O13 and La3PO7). However, post deposition heat treatment of coated samples at 1100 °C for 2 h resulted in the reversible formation of stoichiometric lanthanum orthophosphate (LaPO4). Raman spectral analysis was used to confirm the phase structure of the coatings deposited at various plasma input powers. The coatings obtained were found to effectively lower the thermal conductivity of the substrates from ~24 W/mK to less than 19 W/mK (~10%) even at 200 °C.  相似文献   

20.
In order to solve the low temperature stability of electrical properties in KNN-based ceramics, (1 ? x)[(K0.5Na0.5)0.95Li0.05](Nb0.95Sb0.05)O3xBaTiO3 [(1 ? x)KNLNS–xBT] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. The introduction of BT stabilizes the tetragonal phase of KNLNS ceramics at room temperature, results in a typical ferroelectric relaxor behavior, and shifts the polymorphic phase transition to below room temperature. Moreover, there is a strong BaTiO3 concentration dependence of relaxor behavior and electrical properties, and the ceramic with x = 0.005 exhibits optimum electrical properties and typical relaxor behavior (d33 = 269 pC/N, kp = 0.50, ?r = 1371, tan δ = 0.03, TC  349 °C and γ = 1.88024). These results indicate that the BT is an effective way to improve the temperature stability as well as the electrical properties of KNN-based ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号