首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
不经过隐私处理直接发布轨迹数据会导致移动对象的个人隐私泄露,传统的轨迹隐私保护技术用聚类的方法产生轨迹k-匿名集,只适用在自由空间环境,并不适用于道路网络环境中。针对上述问题设计了一种路网环境中的轨迹隐私保护方法,将路网环境中的轨迹模拟到无向图上,并将轨迹k-匿名问题归结到无向图的knode划分问题上。证明了图的k-node划分是NP-完全问题,并提出贪心算法解决此问题。通过实验验证了该算法的匿名成功率平均接近60%,最高可达80%以上。  相似文献   

2.
霍峥  崔洪雷  贺萍 《计算机应用》2018,38(1):182-187
针对轨迹数据隐私保护算法数据可用性低及易受语义位置攻击和最大运行速度攻击等问题,提出了一种在路网环境中基于语义轨迹的隐私保护算法——k-CS算法。首先,提出了两种路网环境中针对轨迹数据的攻击模型;然后,将路网环境中基于语义轨迹的隐私问题定义为k-CS匿名问题,并证明了该问题是一个NP难问题;最后,提出了一种基于图上顶点聚类的近似算法将图上的顶点进行匿名,将语义位置由相应的匿名区域取代。实验对所提算法和轨迹隐私保护经典算法(k,δ)-anonymity进行了对比,实验结果表明:k-CS算法在数据可用性、查询误差率、运行时间等方面优于(k,δ)-anonymity算法;平均信息丢失率比(k,δ)-anonymity算法降低了20%左右;算法运行时间比(k,δ)-anonymity算法减少近10%。  相似文献   

3.
针对现有扰动机制未考虑位置点语义关系导致数据可用性较低的问题,提出一种基于差分隐私(DP)的轨迹位置隐私保护机制(DP-TLPM)。首先,DP-TLPM利用滑动窗口提取轨迹停留点生成模糊区域,再利用指数机制和拉普拉斯机制对该区域进行采样;其次,为了消除采样点中可能存在的无语义位置点,提出一种路网匹配算法,对轨迹分段并利用误差椭圆匹配(EEM)进行迭代匹配;最后,根据匹配后的位置点形成扰动轨迹,由用户端将扰动轨迹发送至服务器。实验以混淆质量和均方根误差(RMSE)为评价标准对该机制进行综合评测。与GeoInd算法相比,DP-TLPM的数据质量损失降低了24%,轨迹的混淆质量提高了52%,从隐私保护强度和数据质量两方面验证了该算法的有效性。  相似文献   

4.
针对位置服务中基于K-匿名方法构造的匿名集因未考虑语义信息导致语义推断攻击问题,提出了一种路网环境下的语义多样性位置隐私保护方法。该方法根据不同语义位置用户访问数量,利用欧氏距离选择具有相似特性的语义位置类型,构建最优语义位置类型集合。根据路段上属于该类型集的语义位置所占比例,选择最优路段构建匿名集,使得匿名集不仅满足语义多样性,而且增加了用户语义位置的不确定性。实验结果表明,与LSBASC算法相比,该方法在平均匿名时间上提高了27%,SDA算法的执行效率更好。在相对空间粒度上减小了21%,隐私泄露程度上降低了3%,SDA算法以更小的匿名空间提供更高的服务质量和隐私保护程度,能有效地保护用户语义位置隐私。  相似文献   

5.
轨迹隐私保护技术研究   总被引:44,自引:0,他引:44  
霍峥  孟小峰 《计算机学报》2011,34(10):1820-1830
随着移动设备和定位技术的发展,产生了大量的移动对象轨迹数据.轨迹数据含有丰富的时空信息,对其分析和挖掘可以支持多种与移动对象相关的应用.然而,针对轨迹数据的攻击性推理可能导致个人的兴趣爱好、行为模式、社会习惯等隐私信息暴露.另一方面,在基于位置的服务中,由于现有位置隐私保护技术并不能解决轨迹隐私泄露的问题,移动对象的个...  相似文献   

6.
李雯萱  吴昊  李昌松 《计算机应用》2023,43(11):3472-3483
5G时代的到来使基于位置的服务(LBS)应用更加广泛,但用户在享受LBS带来的巨大便利时,也会面对由位置服务引发的诸多隐私泄露问题.为了加强匿名的安全性,提高数据效用,对抗拥有一定背景知识的攻击以及保护用户的敏感信息,研究者们提出了基于语义的位置隐私保护机制.首先,对位置隐私保护系统结构和传统的保护技术进行介绍;其次,分析了基于语义的隐私泄露和攻击方式,给出了结合语义的位置隐私保护需求,重点从单点位置隐私保护和轨迹隐私保护两个方面综述了基于语义的位置隐私保护研究中最新的关键技术和成果;最后,对未来技术发展趋势和下一步研究工作进行展望.  相似文献   

7.
付宇  王红 《计算机应用》2019,39(8):2318-2325
针对位置隐私保护中路网环境和欧氏空间环境对移动对象不同的约束限制,提出一种适用于这两类不同空间约束特点的虚拟轨迹填充算法。该算法接管了用户与位置服务提供者之间的交互,并构建了虚拟用户轨迹对真实轨迹进行混淆填充,从而实现了真实轨迹的隐藏和保护。首先,对目标区域进行分区和汇聚点提取;随后,以汇聚点为基础进行轨迹分段和虚拟轨迹的生成;最后,通过构建时序预置算法和轨迹混淆填充算法实现了虚拟轨迹的合理分布,增加了将轨迹信息关联到特定目标对象的难度。实验结果表明,所提算法能够在每用户15次以内的填充后将位置隐私披露风险概率从60%下降并稳定在10%左右,轨迹隐私披露概率从50%下降并稳定在6%左右,能达到较好的位置隐私保护的效果。  相似文献   

8.
在使用位置查询服务时需要提供用户真实位置信息,导致用户信息泄露。大部分研究只针对单个用户的隐私保护,而忽略了多用户之间的相关性。针对轨迹隐私保护中多用户相关性的问题,提出了一种基于用户相关性的差分隐私轨迹隐私保护方案。首先,构建历史轨迹树,利用变阶马尔可夫模型预测用户轨迹,从轨迹集合中生成一组高可用性的轨迹数据集;其次,根据用户轨迹之间的相关性获取一组关联性较低的预测轨迹集;最后,通过自定义隐私预算的方法,根据用户不同的隐私需求动态调整每个位置点的隐私预算并为发布轨迹添加拉普拉斯噪声。实验结果表明:与LPADP算法相比,该算法的执行效率提升了10%~15.9%;与PTPP和LPADP算法相比,该算法的数据可用性提升了11%~16.1%,同时提升了隐私保护程度。  相似文献   

9.
位置隐私保护与基于位置的服务(location based service, LBS)的查询服务质量是一对矛盾,在连续查询(continuous query)和实际路网环境下,位置隐私保护问题需考虑更多限制因素.如何在路网连续查询过程中有效保护用户位置隐私的同时获取精确的兴趣点(place of interest, POI)查询结果是目前的研究热点.利用假位置的思想,提出了路网环境下以交叉路口作为锚点的连续查询算法,在保护位置隐私的同时获取精确的K邻近查询(K nearest neighbor, KNN)结果;基于注入假查询和构造查询匿名组的方法,提出了抗查询内容关联攻击和抗运动模式推断攻击的轨迹隐私保护方法,并在分析中给出了位置隐私保护和查询服务质量平衡方法的讨论.性能分析及实验表明,该方法能够在连续查询中提供较强的位置隐私保护,并具有良好的实效性和均衡的数据通信量.  相似文献   

10.
11.
王璐  孟小峰 《软件学报》2014,25(4):693-712
大数据时代移动通信和传感设备等位置感知技术的发展形成了位置大数据,为人们的生活、商业运作方法以及科学研究带来了巨大收益.由于位置大数据用途多样,内容交叉冗余,经典的基于“知情与同意”以及匿名的隐私保护方法不能全面地保护用户隐私.位置大数据的隐私保护技术度量用户的位置隐私,在信息论意义上保护用户的敏感信息.介绍了位置大数据的概念以及位置大数据的隐私威胁,总结了针对位置大数据隐私的统一的基于度量的攻击模型,对目前位置大数据隐私保护领域已有的研究成果进行了归纳.根据位置隐私的保护程度,可以把现有方法总结为基于启发式隐私度量、概率推测和隐私信息检索的位置大数据隐私保护技术.对各类位置隐私保护技术的基本原理、特点进行了阐述,并重点介绍了当前该领域的前沿问题:基于隐私信息检索的位置隐私保护技术.在对已有技术深入分析对比的基础上,指出了未来在位置大数据与非位置大数据相结合、用户背景知识不确定等情况下保护用户位置隐私的发展方向.  相似文献   

12.
众源轨迹的泛在、实时特性,使其成为道路信息快速获取与更新的重要途径.针对矢量道路数据的变化检测与更新问题,提出了一种基于车辆轨迹大数据的道路网快速变化发现与更新方法.1)以道路弧段为基本单元构建缓冲区,根据道路变化信息类型及表现形式,运用轨迹运动几何信息(方向、转角)与交通语义信息(速度、流量),对道路变化信息进行检测、分类,确定道路变化类型;2)将道路变化类型推断与增量信息提取相结合,分别运用Delaunay三角网、交通流时间序列分析提取增量信息;3)根据变化类型进行增量信息融合.运用深圳市出租车GPS轨迹数据进行实验分析,结果表明:该方法相比常规方法能正确判断道路变化类型、区分真实变化与语义变化,增量信息精度提高约18%,且适于图层级的批处理快速更新.  相似文献   

13.
康军  黄山  段宗涛  李宜修 《计算机应用》2021,41(8):2379-2385
在全球定位、移动通信技术迅速发展的背景下涌现出了海量的时空轨迹数据,这些数据是对移动对象在时空环境下的移动模式和行为特征的真实写照,蕴含了丰富的信息,这些信息对于城市规划、交通管理、服务推荐、位置预测等领域具有重要的应用价值,而时空轨迹数据在这些领域的应用通常需要通过对时空轨迹数据进行序列模式挖掘才能得以实现.时空轨迹...  相似文献   

14.
现有位置预测方法的研究多集中于对轨迹数据的挖掘和分析,而在如何通过轨迹数据中含有的信息内容以及外源数据以提高位置预测精确度方面的研究尚不深入,有很大研究空间.提出了一种挖掘语义轨迹信息并结合出行方式的未来位置预测模型,该模型首先可实现根据语义轨迹进行相似用户挖掘,并结合个人语义轨迹和相似用户位置轨迹得到频繁模式集合,最后结合2个集合对目标轨迹得到未来位置预测候选集;然后可实现对未来出行方式进行识别,同时结合历史出行方式和位置轨迹数据,建立Markov模型对未来位置进行预测得到候选集,最后结合前一部分的候选集得到最终未来位置结果.此模型不仅能结合语义轨迹挖掘相似用户的行为活动,还可同时融合出行方式的外源数据克服位置轨迹的局限性.实验验证表明:该模型能对日常生活中的轨迹位置数据进行预测并达到86%的精确度,同时在不同的频繁模式支持度下,其精确度都比未结合出行方式模型时平均高出5%,因此本模型对位置预测结果的提高具有有效性.  相似文献   

15.
针对轨迹数据发布时轨迹和非敏感信息引起的隐私泄露问题,提出一种基于非敏感信息分析的轨迹数据隐私保护发布算法。首先,分析轨迹和非敏感信息的关联性构建轨迹隐私泄露判定模型,得到最小违反序列元组(MVS),然后借鉴公共子序列的思想,在消除MVS带来的隐私泄露风险时,选择MVS中对轨迹数据损失最小的时序序列作为抑制对象,从而生成具有隐私能力和低数据损失率的匿名轨迹数据集。仿真实验结果表明,与LKC-Local算法和Trad-Local算法相比,在序列长度为3的情况下,该算法平均实例损失率分别降低了6%和30%,平均最大频繁序列(MFS)损失率分别降低了7%和60%,因此所提算法能够有效用于提高推荐服务质量。  相似文献   

16.
针对移动社交网络迅猛发展带来的发布轨迹隐私泄露问题,提出了一种个性化的轨迹保护方案。根据个体个性化的隐私保护需求差异,对不同个体采用了不同的保护准则,这样可以解决传统隐私保护下“过度保护”及轨迹效用低等问题。给出k敏感轨迹匿名和(k,p)敏感轨迹匿名等重要的隐私保护定义,并利用Trie树的构造、剪枝、重构等技术实现了个体的个性化隐私保护。最后,通过在真实数据集上的实验分析,证明该个性化方案比现存隐私保护方案在轨迹位置损失率方面性能优,计算延时较低和效率高。  相似文献   

17.
交通流量预测是建设智慧城市中一项重要性高且挑战性大的任务。准确预测需要考虑如节假日、相似节点和天气等多种影响因素组成的时空特征。为了准确捕获到路网路口的时空特征,提出了一种基于图卷积神经网络、时序算法Prophet和Pearson相关系数的预测模型,以实现考虑空间结构、相似节点、节假日及其他影响因素对路口流量的准确预测。首先,为降低相似节点影响引入Pearson相关系数,改进时序算法,实现时间特征的捕捉;然后,采用图卷积神经网络实现空间特征的捕捉;最后,通过线性回归确定图卷积网络和时序算法的融合权重,得到时空融合预测的结果。最终基于成都市出租车轨迹数据分析提取出路口流量数据,并进行了流量预测实验。结果表明,提出的模型准确性优于大多现有的基线方法,与T-GCN、ASTGCN、AGCRN模型相比,MAE分别降低了1.623、0.724、0.161,精度分别提高了0.144、0.068、0.021,验证了该模型在交通路口流量预测中的有效性。  相似文献   

18.
吴瑕  唐祖锴  祝园园  彭煜玮  彭智勇 《软件学报》2018,29(10):3184-3204
随着GPS定位技术的不断发展与智能移动设备的普及,轨迹数据的获取变得越来越容易,同时,轨迹数据相关应用的需求也逐渐增多.在轨迹数据上加入语义信息,可以得到体积较小、质量较高、能够更好地反映用户行为的语义轨迹,在其上实现旅游线路推荐、路线预测、用户生活模式挖掘、朋友推荐等应用,可以更好地满足用户需求.挖掘语义轨迹的频繁模式是实现这些应用的技术基础,而在很多情况下,用户对语义轨迹频繁模式常存在到达时间方面的需求,比如按特定时间游玩热门景点的同时需要按时到达车站候车.现有的语义轨迹模式挖掘方法大多没有考虑到达时间的约束,挖掘出的频繁模式缺少到达时间信息;少数方法考虑了精确的到达时间,但因为约束太强会导致无法挖掘到频繁的模式.因此,首次对近似到达时间约束下的语义轨迹频繁模式(approximate arrival-time constrained frequent pattern,简称AAFP)挖掘方法进行了研究,并给出了其形式化定义;通过时间轴划分提出了挖掘AAFP的基线算法,并通过建立索引AAP-tree提出了改进后的高效、灵活的AAFP挖掘算法;之后提出了信息熵增量公式,并给出了时间轴划分及AAP-tree的高效维护方法;最后在真实数据集上进行实验,验证了方法的有效性及高效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号