首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
随着越来越多数据中心的构建和部署,能耗问题成为研究热点。作为一种有效的节能策略,虚拟机整合受到了研究人员和业界的关注。针对传统的虚拟机放置策略的不足,利用化学反应优化算法CRO求解数据中心的虚拟机放置问题,并通过禁忌搜索算法提高CRO算法中器壁无损碰撞对解的勘探能力。仿真实验表明,相对于传统的贪婪放置策略FFD和基于ACO的放置策略,提出的CROTS算法可有效降低数据中心物理机的使用个数,进而降低了数据中心的能耗。  相似文献   

2.
虚拟机放置(VMP)是虚拟机整合的核心,是一个多资源约束的多目标优化问题。高效的VMP算法不仅能显著地降低云数据中心能耗、提高资源利用率,还能保证服务质量(QoS)。针对数据中心能耗高和资源利用率低的问题,提出了基于离散蝙蝠算法的虚拟机放置(DBA-VMP)算法。首先,把最小化能耗和最大化资源利用率作为优化目标,建立多目标约束的VMP优化模型;然后,通过效仿人工蚁群在觅食过程中共享信息素的机制,将信息素反馈机制引入蝙蝠算法,并对经典蝙蝠算法进行离散化改进;最后,用改进的离散蝙蝠算法求解模型的Pareto最优解。实验结果表明,与其他多目标优化的VMP算法相比,所提算法在使用不同数据集的情况下都能有效降低能耗,提高资源利用率,实现了在保证QoS的前提下的降低能耗和提高资源利用率两者之间的优化平衡。  相似文献   

3.
在云环境中,通常将不同用户的虚拟机放置在同一台物理机上,这种物理资源的共享对用户的隐私数据构成了严重威胁.恶意用户可以通过启动大量虚拟机或者利用虚拟机放置策略存在的漏洞提高与目标虚拟机共存的概率.为了进行主动防御,文章提出一种在考虑安全性的同时也关注能耗以及负载均衡的放置方法.将虚拟机以相同的概率进行随机分组,以防止恶...  相似文献   

4.
《计算机工程》2017,(8):32-37
现有的虚拟机放置研究多以节能为目标,通过资源整合减少能源消耗,然而资源的过度聚合会影响网络性能。为此,研究网络感知的虚拟机放置问题并分析相关影响因素,提出一种两阶段启发式虚拟机放置算法。根据虚拟机之间的相似度进行适当聚合,以提高虚拟机之间的网络通信能力,减少数据中心的网络流量,同时根据聚合结果,利用改进的背包算法在物理机之间合理分配虚拟机。实验结果表明,与最佳适应算法和随机算法相比,该算法能更有效地优化网络流量分布,减少激活的物理机数量,降低能源开销。  相似文献   

5.
提出云数据中心考虑虚拟机关联性的虚拟机放置策略.在物理主机状态检测和虚拟机选择阶段,采用鲁棒局部归约主机检测方法LRR(Local Regression Robust)和最小迁移时间选择方法MMT(Minimum Migration Time);在虚拟机放置阶段,采用多重相关系数来评价虚拟机之间的关联性.该策略在重新分...  相似文献   

6.
虚拟机放置问题是云数据中心资源调度的核心问题之一,它对数据中心的性能、资源利用率和能耗有着重要的影响。针对此问题,以降低数据中心能耗、改善资源利用率和保证服务质量(QoS)为优化目标,借助模糊聚类的思想提出了一种基于模糊隶属度的虚拟机放置算法。首先,结合物理主机过载概率和虚拟机与物理主机之间的相适性放置关系,提出了新的距离度量方法;然后,根据模糊隶属度函数计算得出虚拟机与物理主机之间的相适性模糊隶属度矩阵;最后,借助能耗感知机制,在模糊隶属度矩阵中进行局部搜索从而获得迁移虚拟机的最优放置方案。仿真实验结果表明,提出的算法在降低云数据中心能耗、改善资源利用率和保证QoS方面表现比较优异。  相似文献   

7.
提出一种基于家族遗传算法的虚拟机放置策略FGA-VMP(family genetic algorithm based virtual machine place-ment).采用一个自调节的变异算子(mutation operator)避免普通遗传算法的早熟问题;把整个种群划分为多个家族,将这些家族的进化操作并行处理,...  相似文献   

8.
徐思尧  林伟伟  王子骏 《软件学报》2016,27(7):1876-1887
提出了一种基于虚拟机负载高峰特征的虚拟机放置策略,通过更好地复用物理主机资源来实现资源共享,从而提高资源利用率.在云环境下,当多个虚拟机的负载高峰出现在相同的时间段内时,非高峰时段的资源利用率就会明显偏低;相反,多个虚拟机只要负载高峰能错开在不同的时间,闲置的资源就能更充分地被利用.由于应用的负载通常具有一定的周期性,因此,可以利用虚拟机负载的历史数据作为分析的依据.基于虚拟机的负载高峰特征对虚拟机负载进行建模,建立虚拟机负载之间的相似度矩阵来实现虚拟机联合放置.使用CloudSim模拟实现了所提出的算法,并与基于相关系数的放置算法、随机放置算法进行了比较.实验结果表明:所提算法在平均CPU利用率上有8.9%~12.4%的提高,主机使用量有8.2%~11.0%的节省.  相似文献   

9.
低能量消耗与物理资源的充分利用是绿色云数据中心构造的两个主要目标,需要采用虚拟机迁移模型来完成优化,为此提出了融合虚拟机选择和放置的虚拟机迁移模型INTER-VMM(Interrelation approach in virtual machine migration)。INTER-VMM设计了云数据中心的基于多维物理资源约束的能量消耗模型,是一种将主机负载检测、虚拟机选择及放置结合起来考虑的虚拟机迁移策略。在虚拟机选择中采用HPS(High CPU utilization selection)选择法,选择超负载物理主机上CPU利用率最高的一个虚拟机,让其进入候选迁移虚拟机列表中。在虚拟机放置中采用空间感知分配(Space aware placement, SAP)放置法,考虑了充分利用物理主机空余空间使用效率的方法。仿真结果表明,INTER-VMM比近几年来常见的虚拟机迁移策略具有更好的性能指标,对云服务提供商具有很好的参考价值。  相似文献   

10.
随着云计算技术的大规模应用,云应用的交互更加依赖于网络,较差网络拓扑的选择,增加了应用在网络中的通信流量,严重影响应用的运行效率和服务质量。为解决此问题,提出了一种基于粒子群优化算法的虚拟机放置策略。该策略通过建立云环境内部时延模型,利用改进的粒子群优化算法求解目标函数,来降低应用的时延,提高运行效率。并在CloudSim平台上进行仿真实验,实验结果表明,该策略的响应时间低于基本粒子群优化算法(PSO),并且修改后的PSO算法在不影响收敛精度的前提下较大幅度地提高粒子群算法的收敛速度,提高了云环境中应用的运行效率。  相似文献   

11.
李小六  张曦煌 《计算机应用》2013,33(12):3586-3590
针对云计算的资源管理问题,提出了云计算数据中心的能量模型以及四个虚拟机放置算法。首先计算每个机架上主机的负载并根据设定的阈值进行归类,然后采用最少迁移策略从主机上选择合适迁移的虚拟机并且接受新的虚拟机分配请求,对每个虚拟机与主机集合进行匹配,选择最优化的主机进行放置。实验结果表明,与现有的能量感知资源分配方法相比,该方法在主机、网络设备以及冷却系统方面能量利用率分别提高了2.4%,18.5%和28.1%,总的能量利用率平均提高了14.5%。  相似文献   

12.
张小庆  贺忠堂 《计算机应用》2014,34(11):3222-3226
针对数据中心在虚拟机动态部署过程中的高能耗问题,提出了面向数据中心的两阶段虚拟机能效优化部署算法--DVMP_VMMA。第一阶段为初始部署,提出了动态虚拟机部署(DVMP)算法限定主机最优部署数量,降低了闲置能耗;同时,为了应对负载的动态变化,第二阶段提出迁移约束的虚拟机迁移算法(VMMA)对初始部署方案作进一步优化,这样不仅得到的系统能耗更低,而且还能保证应用服务质量。与满载算法(FL)、基于固定门限值的部署算法(FT),绝对中位差部署算法(MAD)、四分位差部署算法(QD)、迁移周期最优算法(MTM)、最小占用率迁移算法(MIU)进行的比较实验结果表明:DVMP_VMMA不仅考虑了系统能耗优化,使运行时资源利用率更高;而且还可以避免VM频繁迁移完成对性能的提升,其在优化数据中心能耗、SLA违例、VM迁移量的控制及性能损失等指标上均有较好效果,其综合性能优于对比算法。  相似文献   

13.
闫成雨  李志华  喻新荣 《计算机应用》2016,36(10):2698-2703
针对云环境下动态工作负载的不确定性,提出了基于自适应过载阈值选择的虚拟机动态整合方法。为了权衡数据中心能源有效性与服务质量间的关系,将自适应过载阈值的选择问题建模为马尔可夫决策过程,计算过载阈值的最优选择策略,并根据系统能效和服务质量调整阈值。通过过载阈值检测过载物理主机,然后根据最小迁移时间原则以及最小能耗增加放置原则确定虚拟机的迁移策略,最后切换轻负载物理主机至休眠状态完成虚拟机整合。仿真实验结果表明,所提出的方法在减少虚拟机迁移次数方面效果显著,在节约数据中心能源开销与保证服务质量方面表现良好,在能源的有效性与云服务质量二者之间取得了比较理想的平衡。  相似文献   

14.
    
Data centers consume an enormous amount of energy to meet the ever‐increasing demand for cloud resources. Computing and Cooling are the two main subsystems that largely contribute to energy consumption in a data center. Dynamic Virtual Machine (VM) consolidation is a widely adopted technique to reduce the energy consumption of computing systems. However, aggressive consolidation leads to the creation of local hotspots that has adverse effects on energy consumption and reliability of the system. These issues can be addressed through efficient and thermal‐aware consolidation methods. We propose an Energy and Thermal‐Aware Scheduling (ETAS) algorithm that dynamically consolidates VMs to minimize the overall energy consumption while proactively preventing hotspots. ETAS is designed to address the trade‐off between time and the cost savings and it can be tuned based on the requirement. We perform extensive experiments by using the real‐world traces with precise power and thermal models. The experimental results and empirical studies demonstrate that ETAS outperforms other state‐of‐the‐art algorithms by reducing overall energy without any hotspot creation.  相似文献   

15.
云计算环境下基于蜜蜂觅食行为的任务负载均衡算法   总被引:1,自引:0,他引:1  
针对云计算环境下的任务调度程序通常需要较多响应时间和通信成本的问题,提出了一种基于蜜蜂行为的负载均衡(HBB-LB)算法。首先,利用虚拟机(VM)进行负载平衡来最大化吞吐量;然后,对机器上任务的优先级进行平衡;最后,将平衡重点放在减少VM等待序列中任务的等待时间上,从而提高处理过程的整体吞吐量和优先级。利用CloudSim工具模拟云计算环境进行仿真实验,结果表明,相比粒子群优化(PSO)、蚁群算法(ACO)、动态负载均衡(DLB)、先入先出(FIFO)和加权轮询(WRR)算法, HBB-LB算法的平均响应时间分别节省了5%、13%、17%、67%、37%,最大完成时间分别节省了20%、23%、18%、55%、46%,可以更好地平衡非抢占式独立任务,适用于异构云计算系统。  相似文献   

16.
数据中心能耗优化问题是云计算领域的重要研究方向,但在真实环境中进行相关研究需要承担巨额的研究成本,并且实验周期长,因此仿真技术在该领域广泛应用.为提高数据中心能耗感知仿真实验的准确性和可信度,本文分析了仿真平台的内置能耗模型和其他学者提出的能耗评估方法,并在此基础上提出了基于CPU和内存利用率的能耗评估方法,该方法考虑了CPU利用率对内存能耗的影响,采用多元非线性模型进行回归分析.实验证明,本文提出的能耗评估方法在适用于仿真平台的同时具有较高的预测精度,有效地提高了云计算仿真平台能耗评估的准确性.  相似文献   

17.
面向云计算的虚拟机动态迁移框架   总被引:10,自引:0,他引:10  
根据云计算平台的特点,提出一种新型虚拟机动态迁移框架,并在Xen和KVM这2种典型的开源虚拟机监控器基础上,实现原型系统。测试结果表明,在不同类型计算资源的环境下,该动态迁移框架具有良好的性能,能够对动态迁移进行实时控制,从而满足服务等级协议的要求。  相似文献   

18.
    
Background:Virtual Machine (VM) consolidation is an effective technique to improve resource utilization and reduce energy footprint in cloud data centers. It can be implemented in a centralized or a distributed fashion. Distributed VM consolidation approaches are currently gaining popularity because they are often more scalable than their centralized counterparts and they avoid a single point of failure.Objective:To present a comprehensive, unbiased overview of the state-of-the-art on distributed VM consolidation approaches.Method:A Systematic Mapping Study (SMS) of the existing distributed VM consolidation approaches.Results:19 papers on distributed VM consolidation categorized in a variety of ways. The results show that the existing distributed VM consolidation approaches use four types of algorithms, optimize a number of different objectives, and are often evaluated with experiments involving simulations.Conclusion:There is currently an increasing amount of interest on developing and evaluating novel distributed VM consolidation approaches. A number of research gaps exist where the focus of future research may be directed.  相似文献   

19.
摘要:云计算数据中心越来越庞大,硬件规模也日益增大,而且还会有大量的计算资源、存储资源会出现在云端,促使出现了一大批十万级、百万级、乃至千万级服务器的数据中心,且服务器还可以增量扩展与增量部署,高能耗问题已经日益凸显,严重制约到云计算数据中心的可持续性发展。本文提出了一种新型的云计算数据中心可扩展服务器节能优化策略——效能优化策略,能够基于全局角度来降低能源消耗,优化服务器选择过程,并且还可促使不同服务器之间实现负载均衡。仿真实验结果表明:基于能耗大小来看,本文提出的效能优化策略要比DVFS策略、无迁移策略所对应的能耗分别节约15.23%、24.33%;基于迁移数来看,本文提出的效能优化策略要比DVFS策略所对应的迁移次数减少2425次,总之,本文提出的效能优化策略总体而言要明显比DVFS策略、无迁移策略更优越。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号