首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
在室内定位的复杂环境中,WiFi指纹法的定位性能易受信号波动的影响,行人航位推算方法(Pedestrian Dead Reckoning,PDR)的定位误差会随时间逐渐累积,为了解决这两个方面的问题,提出了一种采用扩展卡尔曼滤波(Extended Kalman Filter,EKF)与粒子滤波(Particle Filter,PF)的融合定位技术,该技术通过融合WiFi指纹法和优化后的行人航位推算方法来提高定位精度。在WiFi指纹法模块,该技术采用传统的加权k近邻法进行定位。在行人航位推算模块,该技术融合多种传感器进行航向估计,改进传统的非线性模型进行步长估计,使优化后的行人航位推算方法更适用于复杂环境中的实际应用。最后,结合粒子滤波和室内地图信息,该技术能够校正估计位置并进一步提高定位精度。通过实验表明,本文提出的融合校正方法能够有效提高定位精度。  相似文献   

2.
提出一种基于粒子滤波的Wi-Fi和PDR的室内定位方法。首先对Wi-Fi指纹数据进行卡尔曼滤波,改善权重KNN提升分类精度;然后通过行人航位推算(PDR)根据加速度传感器数据和方向角数据计算出每步的步长以及步速,从而推算出路径;最后在改进的Wi-Fi和PDR的定位基础上,使用粒子滤波将两者结果进行融合。试验过程中,使用采集两个教室的环境数据,试验结果证明了该算法能提升定位精度。  相似文献   

3.
基于惯性传感器的行人航位推算系统不需要预先安装任何基础设备,能自主运行、实现实时行人定位。设计的硬件平台将低成本、低功耗、小尺寸的MEMS惯性传感器与GPS接收机相结合。在室内、城市峡谷等GPS信号不稳定的环境,惯性传感器根据前一GPS定点推算行人行走的相对位置。行人所处位置高度由气压计测量,与平面位置相结合实现三维定位。简单而有效的跨步探测及步长估计算法降低对微处理器的计算及存储要求。利用互补滤波器融合加速度计、陀螺仪、数字罗盘数据,降低方位误差、提高定位精度。室内行人行走测试实验表明:定位误差低于总行走距离的3%。验证了系统的准确性和可靠性,满足行人定位要求。  相似文献   

4.
为解决室内WiFi定位精度较低及行人航位推算(PDR)定位存在累积误差的问题,提出一种基于扩展Kalman滤波(EKF)的WiFi-PDR融合定位算法。WiFi通过改进的WKNN算法实现匹配定位,根据定位点与K近邻点的接收信号强度指示相对偏差进行权值修正,PDR定位采用多重约束条件的步态检测和在线步长估计方法。在此基础上,将EKF作为WiFi和PDR定位的融合滤波器,以降低WiFi定位回跳和PDR累计误差,从而提高定位精度。实验结果表明,在多次行迹转弯条件下,该融合定位算法的定位精度可达1.8 m。  相似文献   

5.
王续乔  王瑾琨 《计算机应用》2017,37(4):1198-1201
在非定位系统部署信标的大体量场区环境下,针对基于位置的服务(LBS)的室内定位需求问题,提出了一种基于D-S证据推理理论的无线局域网/惯性测量组件(WiFi/IMU)组合定位算法。该算法首先建立各接入点(AP)单点的信号强度传输模型,并利用卡尔曼滤波对接收到的信号强度指示(RSSI)值进行去噪修正处理;然后通过D-S证据理论对实时采集的WiFi信号强度、偏航角、各轴加速度的多源信息进行融合处理,选取可信度高的指纹区块;最后通过加权K近邻(WKNN)算法得到终端估算位置。单元场区仿真实验结果显示,最大误差2.36 m,综合平均误差1.27 m,验证了该算法的可行性与有效性;且误差累计概率分布在小于等于典型距离时为88.20%,优于惩罚参数C支持向量回归机(C-SVR)的70.82%和行人航迹推算(PDR)算法的67.85%。进一步地,算法在全场区实际实验中也表现出了良好的环境适用性。  相似文献   

6.
针对地磁指纹在室内定位中存在重复性,以及行人航迹推算(PDR)累积误差明显的问题,提出了一种基于智能手机的多传感器融合定位方法。该方法首先通过WiFi和随机采样一致性(RANSAC)算法拟合路径,确定初始位置;然后利用手机中的加速度计进行步长估计,利用陀螺仪进行转向检测;最后通过地图约束的自适应粒子滤波(PF)算法以地磁场修正PDR的定位结果。仿真结果表明,该方法能够有效克服PDR的累积误差以及地磁值不唯一的缺陷,提高室内定位精度、减少能耗。  相似文献   

7.
针对消防室内定位技术的需求,搭建了基于惯性测量元件的室内三维定位系统。首先,利用微机电系统(MEMS)惯性传感器获取行人运动过程中的必要参数。然后基于行人航迹推算(PDR)算法,实时计算出行人行走的步数和步长;通过气压传感器实时采集行人所处位置的高度。最后,利用无线数传模块结合服务器端处理,实现行人的室内三维定位。测试表明:系统在正常行走的情况下,可以满足行人的室内三维定位要求。  相似文献   

8.
针对室内空间内的人员定位困难问题进行了研究,提出了一种基于Wi-Fi指纹法和循环神经网络(re-current neural network,RNN)的多传感器融合室内定位算法.该算法将智能手机接收到的路由器信号强度作为时间序列输入RN N,通过RN N获得对行人精度较高的定位,与此同时获取智能手机中惯性测量单元提供的位置信息.随后,通过粒子滤波算法对两种定位方式的定位结果进行融合.在实际场景下设计了多组实验进行对比.实验结果表明,该算法定位平均误差为0.9 m,优于加权K近邻等算法,可以为行人提供实时的定位.  相似文献   

9.
针对缺少全球定位系统情况下的室内定位需求,提出了一种航位推算/接收信号强度指示组合的室内定位算法。基于搭载多传感器的智能移动终端,采用方位传感器监测航向,通过监测Z轴加速度判定步数,利用接收信号强度指示的绝对定位在线更新步长和修正航位推算产生的积累误差,充分发挥了两种定位方法的优势。对采用航位推算/接收信号强度指示组合算法的室内定位系统在安卓平台上进行了实现及有效性验证。  相似文献   

10.
针对行人位置感知问题提出了一种融合水平仪、气压计的行人位置估计算法。利用水平仪采用行人航位推算算法完成行人二维室内定位,通过气压计辅助完成对多楼层的行人位置识别。通过采集实时的水平仪数据和连续的气压计数据,可以准确完成对行人所处多层建筑物中的位置变化追踪和定位。实验结果表明,本文算法定位的平均误差为3 m,90%的定位误差小于2m,60%的定位误差小于5m,优于传统行人航迹推算算法。  相似文献   

11.
针对室内环境中WIFI信号强度易受外界干扰,其不稳定性使得在指纹数据库中进行匹配时准确性较低,定位精度不高的问题,提出一种基于室内指纹定位的优化算法。该算法分别对指纹数据库和匹配算法进行优化。数据库优化采用限幅和滑动平均滤波进行预处理,并根据室内环境分配采样点所属区域ID,构建多维指纹数据库;匹配算法优化首先根据SVM对待定位点分类,获取其对应的区域id,再将欧氏距离、曼哈顿距离和切比雪夫距离三者结合得到位置估计。最后,结合PDR算法将得到的步长与航向角一同进行粒子滤波实现定位。实验表明:本文的算法将定位精度提高了13.92%。  相似文献   

12.
针对实际定位应用中室内环境复杂,传统的WiFi室内定位算法精度低、稳定性差、代价较高以及不同移动终端之间采集信号强度存在差异等问题,提出了基于dynFWA-SVM的WiFi室内定位模型.定位过程中,利用高斯滤波对信号进行除奇异值操作,同时采用信号强度差(SSD)位置指纹替代传统的接收信号强度(RSS)位置指纹;采用动态搜索烟花算法(dynFWA)优化支持向量机(SVM)参数,从而建立了dynFWA-SVM室内定位模型.实验结果表明:经高斯滤波处理后的SSD指纹可以有效提高定位的稳定性和可靠性,减小因不同终端采集信号强度存在差异对定位结果造成的影响,相较于粒子群优化(PSO)算法和烟花算法(FWA),dynFWA算法的优化效率更高,提出的dynFWA-SVM定位模型的定位误差更低.  相似文献   

13.
针对当前行人航位推算系统因行人随意性行走、传感器漂移等造成行人步长估计不精确、方向计算误差累积问题,提出了一种基于神经网络和智能手机内置多传感器融合的PDR室内定位方法.首先利用加速计采集的传感器数据和移动距离数据训练BP神经网络,将训练好的BP神经网络模型进行行人移动距离预测,然后根据行人行走步伐的连续性特点和传感器输出之间的相关性,设计了一种微航向角融合的方向估计算法.该算法通过对行走过程中的情况进行分类以获得可靠的传感器源,利用3种微航向角进行分类加权融合,最终获得行人行走方向的精确估计.实验结果表明,通过行人移动距离预测和微航向角融合算法能够实现得较好的定位效果.  相似文献   

14.
为了解决低成本微机电惯性导航系统存在的累积误差问题,提出一种基于融合行人航迹推算(PDR)和超宽带(UWB)无线定位的实时室内行人导航系统.利用加速度计和磁强计进行初始姿态对准;考虑滤波误差估计,推导了惯性导航算法;依靠加速度计和陀螺仪的"与"逻辑进行行人步态检测;实施零速更新(ZUPT)提供速度误差观测量,利用UWB系统提供位置误差观测量;设计具有野值辨识机制的扩展卡尔曼滤波器进行数据融合.对提出的行人导航算法进行实验验证,结果表明该行人导航算法与传统定位方法相比能够有效提高行人定位精度.实验中,该行人导航算法能够获取低于0.2 m的定位误差,且稳定、不发散.  相似文献   

15.
针对精确的室内定位中节点受复杂环境的干扰带来因距离相同而位置不同的环境差异,造成定位精度不足和定位稳定性较差的问题,提出了一种新的动态环境衰减因子(DEAF)模型的算法。算法构造DEAF模型,且重新定义了其取值方式。在算法中,首先利用粒子滤波算法对接收到的信号强度(RSSI)进行平滑处理;然后利用DEAF模型计算目标节点的估计距离;最后用三边测量法求出目标节点的坐标。通过与几种常用的滤波模型进行对比实验,得出这种动态环境衰减模型结合粒子滤波的算法能很好地调和不同位置带来的环境噪声差异,算法使定位平均误差降到0.68 m左右,且在室内定位中有较高的定位精度和较好的稳定性。  相似文献   

16.
随着移动计算领域的兴起,基于位置的服务越来越受青睐。目前各种室内定位的方法层出不穷,由于室内广泛部署了无线基础设施,基于WiFi指纹信息的室内定位技术是其主流方法。设备异构和室内环境变化是影响定位精度的主要因素。本文针对以上两个问题,提出一种层次Levenshtein距离(HLD)的WiFi指纹距离计算算法,实现异构设备的指纹无校准比对。将不同移动设备采集的RSSI信息转化为AP序列,根据AP对应的RSSI值的差异性计算其层次能级,结合Levenshtein距离计算WiFi指纹之间的距离。对于需定位的WiFi指纹RSSI信息,利用HLD算法获取K个近邻,采用WKNN算法进行预测定位。实验中,为了验证算法的鲁棒性和有效性,在3种不同类型的室内环境中采用5种不同的移动设备来采集WiFi的RSSI信息,其定位的平均精度达1.5 m。  相似文献   

17.
传统的行人航位推算(PDR)算法用于井下人员定位时,因步频检测、步长估计和航向估计阶段的姿态累计误差导致定位误差逐渐增大,而常用的零速校正、航向漂移消除、步态信号优化等误差修正方法无法改变PDR算法的固有缺陷,定位精度有待提高。提出采用改进的峰值检测法实现PDR算法中步频检测,基于深度循环神经网络(RNN)实现步长估计。将改进的PDR算法用于井下人员定位:首先采用手机加速度传感器、陀螺仪、磁力计获取行人运动数据;然后采用改进的峰值检测法获取固定时间间隔内的平均步频,与时间间隔、加速度及加速度方差作为特征输入训练后的深度RNN模型进行步长估计;最后结合估计的航向角预测人员当前位置。试验结果表明,改进的井下人员定位PDR算法对测试集数据的预测相对误差为5.9%,对实际测试路线的定位相对误差为1.6%~3.9%,小于传统PDR算法定位误差,有效提高了井下人员定位精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号