共查询到19条相似文献,搜索用时 62 毫秒
1.
支持向量机及其在机械故障诊断中的应用 总被引:4,自引:6,他引:4
支持向量机(SVM)是一种基于统计学习理论的新型机器学习方法,对小样本决策具有较好的学习推广性。对近年来支持向量机的研究进展及其在故障诊断中的应用做了简要介绍,讨论了支持向量机的特点和存在的问题,展望了其在机械故障诊断的研究前景。 相似文献
2.
提出了一种基于支持向量机的鼠笼式电机转子断条故障检测方法,通过对电机转子断条故障进行实验模拟,获取了采样信号,利用支持向量机(SVM)对故障样本进行训练,使得支持向量机(SVM)具有分类功能.最后,采用支持向量机(SVM)对电动机各种转子断条故障进行诊断分类,取得较满意的结果. 相似文献
3.
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法,较好解决了小样本、高维数、非线性等学习问题。从理论与实验上比较了目前常用的基于支持向量机的变压器故障诊断方法。 相似文献
4.
5.
《中国测试》2017,(3):111-116
针对自动机振动信号的非线性与短时冲击特性,提出一种基于混沌理论和相关向量机(relevance vector machine,RVM)相结合的自动机故障诊断方法。首先,计算每一组自动机振动信号的最大Lyapunov指数、关联维数、Kolmogorov熵和相对关联距离熵共4个混沌参数并组成特征矩阵,从而表征自动机状态信息。然后,将特征矩阵输入RVM中进行分类识别,判断故障类型。自动机故障诊断实例表明,通过提取自动机振动信号的4个混沌参数可以实现其运行状态信息表征,并且RVM能够较精确地识别自动机的常见故障;此外,通过与支持向量机(support vector machine,SVM)的故障诊断结果进行对比,验证RVM分类模型的优势。 相似文献
6.
7.
针对目前支持向量机参数选择时人为选择的盲目性,将具有良好优化性能的蚁群优化技术应用到支持向量机惩罚函数和核函数参数的优化,提出了蚁群优化支持向量机方法。根据内燃机气门振动信号实测数据,建立了基于蚁群优化支持向量机的内燃机气门间隙故障诊断模型,并与基于遗传支持向量机和反向传播神经网络算法的模型比较。结果表明:应用蚁群优化支持向量机建立的内燃机气门间隙故障诊断模型无论从学习效率还是故障识别准确性上都优于应用另外两种算法建立的模型,能够有效地进行内燃机的故障诊断。 相似文献
8.
提出了基于支持向量机的模拟电路软故障诊断新方法.该方法提取电路的频域响应为故障特征,利用支持向量机对故障进行识别分类.支持向量机具有结构简单、泛化能力强的特点,对小样本分类具有良好的识别效果.以Sallen-Key滤波电路为诊断例,实验结果表明该方法故障诊断准确率大于99%. 相似文献
9.
10.
11.
早期故障及时检测与预防维护具有很大的经济与安全意义,提出一种基于相关向量机(RVM)的智能故障诊断方法用于检测齿轮早期故障。首先,小波包变换与Fisher准则结合,自动确定最优分解层次,并在小波包树节点能量中提取出具有最大分类能力的全局最优特征;其次,RVM用于训练故障诊断模型;最后,在线监控过程中,对连续监测的特征值做滑动平均滤波,再输入到故障诊断模型。实验表明,该方法具有很高的分类精度,RVM模型比SVM模型更适合在线故障监测。 相似文献
12.
13.
针对希尔伯特-黄变换(Hilbert-Huang Transform,HHT)方法中存在的模态混叠和虚假固有模态函数(Intrinsic Mode Function,IMF)问题,提出一种基于总体包络均值经验模态分解(Ensemble Envelop Mean Empirical Mode Decomposition,EEMEMD)和虚假模态函数剔除算法相结合的改进HHT方法。该方法利用EEMEMD可准确反映加噪后信号的自身变化,一定程度上中和残留在各模态分量间的噪声,获得无模式混淆的较纯净的IMF分量。同时,通过基于归一化能量熵值的虚假模态函数剔除算法可有效剔除噪声干扰成分和迭代误差分量,从而提高信号特征提取的准确性。通过仿真分析和转子不对中故障诊断的工程实例表明,改进HHT方法能够较好地抑制模态混叠问题并有效剔除同故障无相关的虚假IMF,实现对旋转机械故障的有效诊断。 相似文献
14.
针对经验模态分解(Empirical Mode Decomposition, EMD)中存在的端点效应问题,提出一种波形特征匹配延拓与余弦窗函数相结合的改进方法。首先对信号进行波形特征匹配延拓,实现延拓数据与原信号交界处的光滑过渡,避免边界处瞬时频率的跳跃;其次针对该延拓方法存在延拓误差的问题,对信号加余弦窗处理,将延拓误差控制在信号两端,使其无法(或以较慢速度)向数据内部发展,保证信号有效数据的正确分解,提高信号的分解精度,实现EMD算法的改进。通过仿真分析和不对中故障诊断实例研究表明,该方法能较好地抑制EMD端点效应,实现旋转机械故障的有效诊断。 相似文献
15.
实际生产中,机械设备的工况变化会造成监测数据的分布差异,破坏分类模型的应用基础,降低诊断准确率。为此,提出一种基于深度学习的领域自适应方法,用于跨工况情境下轴承故障诊断。该方法构建两个级联的深度网络:前者用于处理振动信号,自动挖掘故障敏感特征;后者用于将不同工况的样本特征同步映射到一个深度隐藏层(公共特征空间)中,消除工况波动引起的分布差异,生成工况不变特征,实现领域自适应。此外,该深度映射网络可通过参数优化方法自适应构建,能够实现最佳的跨域诊断性能。实验表明,与其他方法和相关研究相比,深度领域自适应在跨工况故障识别中具有更高的准确率。 相似文献
16.
针对数据驱动时频分析(DDTFA)方法的初始相位函数选取问题,提出一种可准确、快速且自适应优选初始相位函数的改进DDTFA方法。引入数学中函数求极值的思想,将信号的初始相位函数选取问题转换为初始解集的连续寻优问题,通过对DDTFA中的高斯牛顿迭代算法进行精简,以初始解集中的初始相位函数迭代一次斜率的变化量为导数获得初始解集的连续导数集,进而求得局部极大值,并以局部极大值对应信号分量的能量最强为准则优选信号的初始相位函数,进而完成信号分解。仿真分析与齿轮箱故障诊断实例表明,该方法可准确、快速且自适应地优选初始相位函数,并有效提取故障特征,且具有一定抗噪性。 相似文献
17.
18.
19.
摘要:针对传统核模糊聚类(KFCM)算法无法克服边界噪声数据影响且对初始聚类中心敏感的不足,提出一种基于样本密度和最大类间方差法相结合的KFCM算法。该算法在传统的KFCM算法中引入样本分布密度作为权重,克服噪声及边界数据对分类中心的影响,使样本的聚类效果更好,同时还可以分析各样本对聚类的贡献程度。此外利用最大类间方差法对样本密度进行分割,得到各类中心点并以此作为KFCM算法的初始聚类中心,克服了传统算法对初始值敏感的不足。对各种实际数据集的测试结果均显示出新算法的优良性能。最后利用新算法对轴承故障进行诊断,试验结果表明新算法的诊断率优于传统的聚类算法。 相似文献