共查询到20条相似文献,搜索用时 62 毫秒
1.
序列关联并行挖掘算法研究 总被引:1,自引:0,他引:1
Ming sequential associations is becoming increasing essential in many scientific and commercial domains Developing parallel algorithm becomes quite challenging depending on enormous size of available dataset and possibly large number of mined associations ,the nature of input data and the timing constraints imposed on the desired associa-tions. In this paper , we discuss several different parallel algorithms that cater to various situations to speed up thecurrent mining process. 相似文献
2.
利用电商平台推荐算法难以准确建立用户关系网络,为保证平台内商品推荐的准确性,研究关联规则挖掘Apriori算法在农产品电商平台推荐中的应用方法。首先,计算具备相似性的用户关系强度,得到词语概率的分布规律,通过时间综合相似度获得多个主题内容的演化结果;其次,基于关联规则挖掘Apriori算法建立电商平台推荐模型,得到新的商品推荐算法;最后,以平均绝对误差与均方根误差作为推荐算法精度的指标,进行实验对比分析。实验结果表明,在不同的特征维数下,关联规则挖掘Apriori算法的平均绝对误差与均方根误差均为相同条件下的最小值,可见该方法在农产品电商平台推荐中最准确,其推荐精度最高。 相似文献
3.
为满足日益增长的海量数据挖掘需求,迫切需要设计一种能够在多台机器上运行的分布式关联规则挖掘算法。Apriori这种高度迭代算法在Hadoop平台上运行时每次迭代执行大量的磁盘I/O操作,大大影响并限制了算法的运行效率。本文利用Spark对分布式计算内置支持的特点,在Spark平台上设计并实现一种分布式关联规则挖掘算法,称为阶段式自适应挖掘算法(Staged Adaptive Apriori)。算法使用自适应的数据集部分处理的策略对频繁项集进行高效挖掘,在每次迭代前初步评估执行时间,并采用较为合适的方法来减少时间和空间的复杂性,是一种基于数据集性质的自适应关联规则挖掘算法。实验结果表明了算法的有效性。 相似文献
4.
大数据在提供海量多源信息的同时,也带来了信息过载问题,这在旅游领域内表现得尤为突出。针对当前游客在制定旅行路线时需要花费大量时间和精力的现状,首先,提出一种融合多源旅游数据构建知识图谱的方法,有效地抽取相关旅游领域知识;其次,利用知识图谱及大量旅行游记生成旅游路线数据库,并提出一种能够根据游客类型生成海量候选路线的频繁路线序列模式挖掘算法;最后,设计了一种多维度路线搜索和排序机制来为用户推荐个性化的旅游路线。基于真实旅游大数据的实验结果表明,该方法可以同时考虑旅行天数、人物类型和景点类型喜好等多方面因素,帮助游客快速制定个性化的旅行路线,有效提升游览体验。 相似文献
5.
6.
关联规则挖掘是数据挖掘的一个重要分支,但随着数据的快速增长,传统关联规则挖掘算法不能很好地适应大数据的要求,需要在分布式、并行计算的平台上寻找突破。Spark是专门为大数据处理而设计的一个适合迭代运算的并行计算模型,相比MapReduce具有更高效、充分利用内存、更适合迭代计算和交互式处理的优点。对已有的基于Spark的并行关联规则挖掘算法进行了分类和综述,并总结了各自的优缺点和适用范围,为下一步的研究提供参考。 相似文献
7.
基于关联规则挖掘的个性化智能推荐服务 总被引:14,自引:1,他引:13
为了解决WWW上的“信息过载”和“资源迷向”问题,该文提出了基于关联规则挖掘的个性化智能推荐服务。个性化智能推荐服务系统包括两个主要部分:离线部分和在线部分,在离线方式下,执行对WEB服务器的访问log文件的分析挖掘,获取用户事务模式,再采用支持度过滤方法获取频繁的用户事务模式,然后,生成聚集树。在在线方式下,针对当前滑窗的用户访问操作路径,采用基于聚集树的关联规则挖掘,获取匹配当前滑窗的用户访问操作路径的关联规则集,生成推荐的候选集。实现在线个性化智能推荐服务。试验结果显示,该文提出的方法是有效的和可行的。 相似文献
8.
客户的兴趣是不断变化的。但是,目前所广泛应用在推荐系统中的协同过滤算法却是静态的,它只是单纯整合客户的历史数据,并未考虑客户的兴趣变化情况,这必然会导致对高信息量客户的低推荐性能。文中将客户的兴趣度变化考虑在内,提出了一种基于客户行为序列的算法,可以在一定程度上提高针对高信息量客户推荐的性能。 相似文献
9.
为了提升社交网络个性化推荐能力,结合用户行为分布进行个性化推荐设计,文中提出基于用户行为特征挖掘的个性化推荐算法,构建社交网络的用户行为信息特征挖掘模型,采用显著数据分块检测方法对社交网络用户特征的行为信息进行融合处理,提取反映用户偏好的语义信息特征量。从情感、关键词和结构等方面根据用户行为特征组,结合模糊信息感知方法进行社交网络个性化推荐过程中的信息融合处理,在关联规则约束控制下,构建社交网络用户偏好特征的混合推荐模型,实现用户偏好特征挖掘,根据语义分布和用户的行为偏好实现社交网络的个性化信息推荐。仿真结果表明,采用所提方法进行社交网络个性化推荐的特征分辨能力较好,对用户行为特征的准确识别能力较强,提高了社交网络推荐输出的准确性。 相似文献
10.
基于用户行为序列的推荐系统的目的是根据上一次序列的顺序预测用户的下一次点击。目前的研究一般是根据用户行为序列中项目的转换来了解用户偏好。然而,行为序列中的其他有效信息被忽略,如用户配置文件,这会导致模型无法了解用户的特定偏好。提出了一种基于双通道异构图神经网络的用户行为序列推荐算法(DC-HetGNN),该方法通过异构图神经网络通道和异构图线图通道学习行为序列嵌入,并捕获用户的特定偏好。DC-HetGNN会根据行为序列构造包含各种类型节点的异构图,可以捕获项目、用户和序列之间的依赖关系。其次,异构图神经网络通道和异构图线图通道捕获物品复杂转换及序列之间的交互信息,并学习包含用户信息的物品嵌入。最后,考虑到用户长期和短期偏好的影响,将局部和全局序列嵌入与注意力网络相结合,得到最终的序列嵌入。在两个电商用户行为序列数据集Diginetica和Tmall上进行的实验表明,DCHetGNN与新近模型FGNN相比在指标平均倒数排名(MRR)和召回率(Recall)中平均分别提升2.08%和0.78%,与TGSRec相比在指标MRR@n和Recall@n中平均分别提升2.70%和0.49%。 相似文献
11.
推荐系统是大数据时代处理信息过载问题的重要手段,传统的推荐算法的准确性和可靠性相对较低。针对用户和项目冷启动问题,提出一种基于概率矩阵分解的混合型推荐算法(HR-TP),先从用户的评分角度挖掘用户的信任关系,再利用标签上下文根据用户特征测量项目间的关联关系,然后融合到概率矩阵模型中进行推荐。实验表明,本文提出的算法在推荐精度上对比常规方法取得了很好的效果。 相似文献
12.
结合现有两种主要群体推荐算法的优势, 建立新的算法框架, 并引入差异度因素对模型进行优化。另外, 考虑到在线社区用户的特点, 定义互动度指标来描述群体成员间的互动程度, 通过分析其与推荐精度之间的关系, 探讨互动度对群体推荐的影响。选取豆瓣网数据进行实验, 并与传统方法进行比较, 结果表明, 融入差异度的算法具有更好的推荐效果, 且有效的互动机制能够保证较高的推荐精度。 相似文献
13.
基于用户模式聚类的智能信息推荐算法 总被引:1,自引:0,他引:1
基于数据挖掘的智能信息推荐日益成为一个重要的研究课题。针对现有智能信息推荐算法存在的不足,提出了一种基于用户模式聚类的智能信息推荐算法(IRUMC)。该算法将相似的用户模式聚类到一起,生成用户聚类模式,然后将用户访问操作与用户聚类模式进行匹配,最后形成推荐集。它比较适合新用户、访问站点较少的用户和有新颖性信息需求的用户。实验结果表明,该算法是有效的。 相似文献
14.
15.
16.
17.
针对互联网站点信息海量和结构复杂的趋势,推荐系统被用来协助互联网用户方便快捷地找到所需信息,培养用户忠诚度。Web挖掘技术在处理海量数据和稀疏数据上有着先天的优势,所以Web挖掘技术在推荐系统中得到了越来越广泛的研究和应用。基于Web挖掘的推荐系统所使用的主要技术有聚类、关联规则、序列模式等等。然而,这些技术往往不能在推荐的准确性和覆盖范围方面做到两全。综合这几种技术,取其优点去其缺点,提出了一种新的算法(AIR算法)。通过基于实际使用数据的详尽的实验评估,可以证明该算法能够在准确性和覆盖范围方面明显提高推荐系统的整体性能。 相似文献
18.
19.