首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
由于光谱分辨率和空间分辨率的制约以及物理条件的限制,高光谱数据具有很高的光谱分辨率而其空间分辨率却很低。因此,一般高光谱数据的空间分辨率往往低于仅有几个波段的多光谱数据的空间分辨率。高光谱数据和多光谱数据的融合可以得到同时具有高空间分辨率和高光谱分辨率的数据,进而应用于更高空间分辨率下地物的识别和分类。非负矩阵分解(Nonnegative Matrix Factorization)算法用于实现低空间分辨率高光谱数据和高空间分辨率多光谱数据的融合。首先利用顶点成分分析法VCA(Vertex Component Analysis)分解高光谱数据,得到初始的端元波谱矩阵和端元丰度矩阵;然后用非负矩阵分解算法交替地对高光谱数据和多光谱数据进行分解,得到高光谱分辨率的端元波谱矩阵和高空间分辨率的丰度矩阵;最后两个矩阵相乘得到高空间分辨率和高光谱分辨率的融合结果。在每一步非负矩阵分解过程中,数据之间的传感器观测模型用于分解矩阵的初始化。AVIRIS和HJ-1A数据实验结果分析表明:非负矩阵分解算法有效提高了高光谱数据的所有波长范围内波段数据的空间分辨率,而高精度的融合结果可用于地物的目标识别和分类。  相似文献   

2.
胡学考  孙福明  李豪杰 《计算机科学》2015,42(7):280-284, 304
矩阵分解因可以实现大规模数据处理而具有十分广泛的应用。非负矩阵分解(Nonnegative Matrix Factorization,NMF)是一种在约束矩阵元素为非负的条件下进行的分解方法。利用少量已知样本的标注信息和大量未标注样本,并施加稀疏性约束,构造了一种新的算法——基于稀疏约束的半监督非负矩阵分解算法。推导了其有效的更新算法,并证明了该算法的收敛性。在常见的人脸数据库上进行了验证,实验结果表明CNMFS算法相对于NMF和CNMF等算法具有较好的稀疏性和聚类精度。  相似文献   

3.
基于FAN模型的广义非负矩阵分解是一种非纯像元假设下有效的高光谱图像非线性光谱解混算法。针对基于FAN模型的广义非负矩阵分解算法的快速实现问题,基于CUDA编程模型与存储器模型设计并行优化,对优化后算法的串行与并行部分进行任务分配与线程映射,设计合理的核函数实现各关键步骤。通过真实高光谱数据的光谱解混实验,结果表明CUDA并行优化后的算法相比串行算法,能达到较高的加速比,验证了其有效性。  相似文献   

4.
目的 高光谱解混是高光谱遥感数据分析中的热点问题,其难点在于信息不充分导致的问题病态性。基于光谱库的稀疏性解混方法是目前的代表性方法,但是在实际情况中,高光谱数据通常包含高斯、脉冲和死线等噪声,且各波段噪声的强度往往不同,因此常用的稀疏解混方法鲁棒性不够,解混精度有待提高。针对该问题,本文对高光谱图像进行非负稀疏分量分解建模,提出了一种基于非负稀疏分量分析的鲁棒解混方法。方法 首先综合考虑真实高光谱数据的混合噪声及其各波段噪声强度不同的统计特性,在最大后验概率框架下建立非负矩阵稀疏分量分解模型,然后采用l1,1范数刻画噪声的稀疏性,l2,0范数刻画丰度的全局行稀疏性,全变分(total variation,TV)正则项刻画像元的局部同质性和分段平滑性,建立基于非负稀疏分量分析的高光谱鲁棒解混优化模型,最后采用交替方向乘子法(alternating direction method of multipliers,ADMM)设计高效迭代算法。结果 在2组模拟数据集上的实验结果表明,相比于5种对比方法,提出方法在信号与重建误差比(signal to...  相似文献   

5.
目的 混合像元问题在高光谱遥感图像处理分析中普遍存在,非负矩阵分解的方法被引入到高光谱图像解混中。本文提出结合空间光谱预处理和约束非负矩阵分解的混合像元分解流程。方法 结合空间光谱预处理的约束非负矩阵分解,如最小体积约束、流行约束等,通过加入邻域的空间和光谱信息进行预处理获得更优的预选端元,从而对非负矩阵分解的解混结果进行优化。结果 在5组不同信噪比的模拟数据实验中,空间预处理(SPP)和空间光谱预处理(SSPP)均能够有效提高约束非负矩阵分解(最小体积约束的非负矩阵分解和图正则非负矩阵分解)的解混结果,其中SPP在不同信噪比的情况下都能优化约束非负矩阵分解的结果,而SSPP在低信噪比的情况下,预处理效果更佳。利用美国内华达州Cuprite矿区数据进行真实数据实验,SPP提高了约束非负矩阵分解的解混精度,而SSPP在复杂场景下,解混精度更佳。模拟数据和真实数据的实验均表明,空间光谱预处理能够有效地提高约束非负矩阵分解的解混精度,特别是对于信噪比较低的情况下,融合空间和光谱信息对噪声有很好的鲁棒性。结论 本文对约束非负矩阵分解的解混算法添加空间光谱预处理,利用高光谱遥感数据的空间和光谱信息,优化预选端元,加入空间光谱预处理的非负矩阵解混实验流程,在复杂场景情况下,对噪声具有较好的鲁棒性。  相似文献   

6.
目的 基于非负矩阵分解的高光谱图像无监督解混算法普遍存在着目标函数对噪声敏感、在低信噪比条件下端元提取和丰度估计性能不佳的缺点。因此,提出一种基于稳健非负矩阵分解的高光谱图像混合像元分解算法。方法 首先在传统基于非负矩阵分解的解混算法基础上,对目标函数加以改进,用更加稳健的L1范数作为重建误差项,提高算法对噪声的适应能力,得到新的无监督解混目标函数。针对新目标函数的非凸特性,利用梯度下降法对端元矩阵和丰度矩阵交替迭代求解,进而完成优化求解,得到端元和丰度估计值。结果 分别利用模拟和真实高光谱数据,对算法性能进行定性和定量分析。在模拟数据集中,将本文算法与具有代表性的5种无监督解混算法进行比较,相比于对比算法中最优者,本文算法在典型信噪比20 dB下,光谱角距离(spectral angle distance,SAD)增大了10.5%,信号重构误差(signal to reconstruction error,SRE)减小了9.3%;在真实数据集中,利用光谱库中的地物光谱特征验证本文算法端元提取质量,并利用真实地物分布定性分析丰度估计结果。结论 提出的基于稳健非负矩阵分解的高光谱无监督解混算法,在低信噪比条件下,能够获得较好的端元提取和丰度估计精度,解混效果更好。  相似文献   

7.
刘亚楠  涂铮铮  罗斌 《计算机应用》2013,33(10):2871-2873
为了充分利用图像本身的结构信息并充分压缩图像数据,把得到的子空间中数据(反馈)的稀疏性作为约束项加入非负张量分解目标函数中,即采用基于反馈稀疏约束的非负张量分解算法对图像集合进行降维。最后,将该算法应用于手写数字图像库中,实验结果表明所提出的方法能有效改善图像分类的准确性  相似文献   

8.
稀疏约束图正则非负矩阵分解   总被引:1,自引:3,他引:1  
姜伟  李宏  余霞国  杨炳儒 《计算机科学》2013,40(1):218-220,256
非负矩阵分解(NMF)是在矩阵非负约束下的一种局部特征提取算法。为了提高识别率,提出了稀疏约束图正则非负矩阵分解方法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘积更新算法,并且在理论上证明了该算法的收敛性。在ORL和MIT-CBCL人脸数据库上的实验表明了该算法的有效性。  相似文献   

9.
非负矩阵分解(Nonnegative Matrix Factorization,NMF)不仅可以很好地描述数据而且分解后的矩阵具有直观的物理意义。为了提高算法的有效性和识别率,提出了一种更为合理的算法——基于图正则化和稀疏约束的增量型非负矩阵分解(Graph Regularized and Incremental Nonnegative Matrix Factorization with Sparseness Constraints,GINMFSC)。该算法既保持了数据的几何结构,又充分利用上一步的分解结果进行增量学习,而且对系数矩阵施加了稀疏性约束,最后将它们整合于单个目标函数中,构造了一个有效的更新算法。在多个数据库上的仿真结果表明,相对于NMF,GNMF,INMF,IGNMF等算法,GINMFSC算法在降低运算时间的同时,还具有更好的聚类精度和稀疏性。  相似文献   

10.
姜小燕  孙福明  李豪杰 《计算机科学》2016,43(7):77-82, 105
非负矩阵分解是在矩阵非负约束下的分解算法。为了提高识别率,提出了一种基于稀疏约束和图正则化的半监督非负矩阵分解方法。该方法对样本数据进行低维非负分解时,既保持数据的几何结构,又利用已知样本的标签信息进行半监督学习,而且对基矩阵施加稀疏性约束,最后将它们整合于单个目标函数中。构造了一个有效的更新算法,并且在理论上证明了该算法的收敛性。在多个人脸数据库上的仿真结果表明,相对于NMF、GNMF、CNMF等算法,GCNMFS具有更好的聚类精度和稀疏性。  相似文献   

11.
针对传统非负矩阵分解(NMF)法用于高光谱图像混合像元分解时产生的分解结果精度不高、对噪声敏感等问题,提出一种基于超像素的流形正则化稀疏约束NMF混合像元分解算法——MRS-NMF。首先,通过基于熵率的超像素分割来构造高光谱图像的流形结构,把原图像分割为k个超像素块并把每个超像素块中具有相似性质的数据点标上相同的标签,定义像素块内有相同标签的任意两个数据点之间的权重矩阵,然后将权重矩阵应用于NMF的目标函数中以构造出流形正则化约束项;第二,在目标函数中添加二次抛物线函数以完成稀疏约束;最后,采用乘法迭代更新法则求解目标函数以得到端元矩阵和丰度矩阵的求解公式,同时设置最大迭代次数和容忍误差阈值,迭代运算得到最终结果。该方法有效利用了高光谱图像的光谱和空间信息。实验结果表明,在模拟的高光谱数据中,与传统的流形稀疏约束的非负矩阵分解(GLNMF)、L1/2-NMF和顶点成分分析-全约束最小二乘法(VCA-FCLS)等方法相比,MRS-NMF可以提高0.016~0.063的端元分解精度和0.01~0.05的丰度分解精度;而在真实的高光谱图像中,MRS-NMF较传统的GLNMF、顶点成分分析法(VCA)、最小体积约束的非负矩阵分解(MVCNMF)等方法可以平均提高0.001~0.0437的端元分解精度。所提MRS-NMF算法有效地提高了混合像元分解的精度,同时具有较好的抗噪性能。  相似文献   

12.
非负矩阵分解(NMF)存在收敛速度慢的缺点,其根本原因是基图像(基矩阵)包含大量的噪声点。另外,系数矩阵相关性很大,不利于区分不同图像。鉴于以上缺点,提出了基于光滑性和主成分的非负矩阵分解(SPNMF):一方面通过添加常数矩阵来增强基矩阵的光滑性,平抑噪声点,达到减少迭代次数的目的;另一方面在原损失函数基础上,将系数矩阵不同列之间的方差作为惩罚项,提高系数矩阵的区分度。在PIE和FERET人脸库中的实验表明,SPNMF不仅能够提高人脸识别的正确率,而且速度比NMF快2~4倍,使得基于非负矩阵的人脸识别系统更具有实用价值。  相似文献   

13.
NSCT和非负矩阵分解的图像融合方法   总被引:2,自引:0,他引:2       下载免费PDF全文
非采样Contourlet变换(Nonsubsampled Contourlet transform,NSCT)是一种新的多尺度变换,它同时具有方向性、各向异性和平移不变性,能有效地表示图像的边沿与轮廓。非负矩阵分解(Non-negative Matrix Factorization,NMF)是在矩阵中所有元素均为非负数的条件下的一种矩阵分解方法。在非负矩阵分解过程中,适当地选取特征空间的维数能够获得原始数据的局部特征。提出了一种基于NSCT和NMF的图像融合方法。首先用NSCT对已配准的源图像进行分解,得到低通子带系数和各带通子带系数;其次将低通子带系数作为原始数据,选取特征空间的维数为1,利用非负矩阵分解得到包含特征基的低通子带系数;对各带通子带系数采取绝对值最大的原则进行系数选择,得到融合图像的各带通子带系数;最后经过NSCT逆变换得到融合图像。实验结果表明,融合结果优于Laplacian方法、小波方法和NMF方法。  相似文献   

14.
对于非负矩阵分解的语音增强算法在不同环境噪声的鲁棒性问题,提出一种稀疏正则非负矩阵分解(SRNMF)的语音增强算法。该算法不仅考虑到数据处理时的噪声影响,而且对系数矩阵进行了稀疏约束,使其分解出的数据具有较好的语音特征。该算法首先在对语音和噪声的幅度谱先验字典矩阵学习的基础上,构建联合字典矩阵,然后更新带噪语音幅度谱在联合字典矩阵下的系数矩阵,最后重构原始纯净语音,实现语音增强。实验结果表明,在非平稳噪声和低信噪比(小于0 dB)条件下,该算法较好地削弱了噪声的变化对算法性能的影响,不仅有较高的信源失真率(SDR),提高了1~1.5个数量级,而且运算速度也有一定程度的提高,使得基于非负矩阵分解的语音增强算法更实用。  相似文献   

15.
杜汉  龙显忠  李云 《计算机应用》2021,41(12):3455-3461
基于图正则非负矩阵分解(NMF)算法充分利用了高维数据通常位于一个低维流形空间的假设从而构造拉普拉斯矩阵,但该算法的缺点是构造出的拉普拉斯矩阵是提前计算得到的,并没有在乘性更新过程中对它进行迭代。为了解决这个问题,结合子空间学习中的自表示方法生成表示系数,并进一步计算相似性矩阵从而得到拉普拉斯矩阵,而且在更新过程中对拉普拉斯矩阵进行迭代。另外,利用训练集的标签信息构造类别指示矩阵,并引入两个不同的正则项分别对该类别指示矩阵进行重构。该算法被称为图学习正则判别非负矩阵分解(GLDNMF),并给出了相应的乘性更新规则和目标函数的收敛性证明。在两个标准数据集上的人脸识别实验结果显示,和现有典型算法相比,所提算法的人脸识别的准确率提升了1% ~ 5%,验证了其有效性。  相似文献   

16.
针对非负矩阵分解后数据的稀疏性降低、训练样本增多导致运算规模不断增大的现象,提出了一种稀疏约束图正则非负矩阵分解的增量学习算法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们与增量学习相结合。算法在稀疏约束和图正则化的条件下利用上一步的分解结果参与迭代运算,在节省大量运算时间的同时提高了分解后数据的稀疏性。在ORL和PIE人脸数据库上的实验结果表明了该算法的有效性。  相似文献   

17.
针对传统的非负矩阵分解(NMF)应用于聚类时,没有同时考虑到鲁棒性和稀疏性,导致聚类性能较低的问题,提出了基于核技巧和超图正则的稀疏非负矩阵分解算法(KHGNMF)。首先,在继承核技巧的良好性能的基础上,用L2,1范数改进标准非负矩阵分解中的F范数,并添加超图正则项以尽可能多地保留原始数据间的内在几何结构信息;其次,引入L2,1/2伪范数和L1/2正则项作为稀疏约束合并到NMF模型中;最后,提出新算法并将新算法应用于图像聚类。在6个标准的数据集上进行验证,实验结果表明,相对于非线性正交图正则非负矩阵分解方法,KHGNMF使聚类性能(精度和归一化互信息)成功地提升了39%~54%,有效地改善和提高了算法的稀疏性和鲁棒性,聚类效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号