首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对带启发式的快速扩展随机树(RRT-Connect)算法路径生成的随机性以及渐进最优的双向快速扩展随机树(B-RRT*)算法收敛速度的缓慢性,提出了一种基于B-RRT*改进的高效路径规划算法(EB-RRT*)。首先引入一种智能采样函数,使随机树的扩展更具方向性,从而减少寻路时间,并提高路径的平滑性;其次在B-RRT*算法的基础上,在EB-RRT*算法中加入了一种快速扩展策略,使改进后的算法在自由空间中使用RRT-Connect算法的扩展方式进行快速扩展,而在障碍物空间则使用改进的渐进最优的快速扩展随机树(RRT*)算法进行扩展,在提高扩展效率的同时避免算法陷入局部最优。将EB-RRT*算法分别与快速扩展随机树(RRT)、RRT-Connect、RRT*和B-RRT*算法进行仿真对比,仿真结果表明,改进后的算法在路径规划效率及路径平滑性方面均明显优于其他算法;且相对于B-RRT*算法,其在路径规划时间上降低了68.3%,在迭代次数上减少了48.6%。  相似文献   

2.
路径规划是移动机器人的重要研究内容。快速扩展随机树(Rapidly-Exploring Random Tree,RRT)算法因在机器人路径规划中的成功应用,自提出以来就得到了极大的研究与发展。快速扩展随机树作为一种新颖的随机节点采样算法,相对传统路径规划算法,具有建模时间短、搜索能力强、方便添加非完整约束等优点。介绍了快速扩展随机树算法的基本原理与性质,并从单向随机树扩展、多向随机树扩展、其他改进等方面概括了算法的研究现状。最后,展望了算法未来的研究方向与挑战。  相似文献   

3.
针对快速探索随机树(RRT)算法进行路径规划时随机性大且未考虑移动代价的问题,提出了任意时间快速探索随机树算法。生成一组快速探索随机树,之后每个树都重新使用上个树的信息来不断改进树的延伸。为进一步优化算法,使用节点缓存来生成一个引力函数来减少移动代价。最终的算法能够快速地生成初始路径,在规划时间内不断地改进路径且通过使用阈值来确保后面路径都比上次的移动代价更小。双足机器人仿真实验中,改进后的算法与初始的算法相比,搜索的节点数由883减少到704,效率提高了近25%。实验结果表明了改进算法的有效性。  相似文献   

4.
改进的快速扩展随机树路径规划算法   总被引:1,自引:0,他引:1  
针对快速扩展随机树(RRT)路径规划算法缺乏稳定性和偏离最优解的问题,提出了一基于RRT的偏向性路径搜索算法(m-RRT).m-RRT采用生成随机点向量组的形式对随机点选取策略进行了优化,改善快速扩展随机树的不确定性,减少不必要的扩展,而加快向目标位置搜索的速度,且得到的路径优于RRT算法的结果.通过其在二维平面路径规划和三维机械臂路径规划的测试,表明其具有一定的应用价值.  相似文献   

5.
针对移动机器人需要访问多目标的巡检路径规划问题,该文提出一种多目标快速探索随机树路径优化方法。首先,根据提供的环境地图与巡检目标点,该文采用一种 RRT-Connect-ACO 算法得到目标点的巡检顺序和可行路径;然后,通过引入信息子集,对路径进行优化,得到最终的最优路径。实验结果表明,与现有的多目标路径规划算法相比,该方法考虑了地形的影响,得到的最优路径更符合实际情况。  相似文献   

6.
针对移动机器人在未知的特殊环境(如U型、狭窄且不规则通道等)下路径规划效率低问题,本文提出一种强化学习(RL)驱动快速探索随机树(RRT)的局部路径重规划方法(RL-RRT).该方法利用Sarsa(λ)优化RRT的随机树扩展过程,既保持未知环境中RRT的随机探索性,又利用Sarsa(λ)缩减无效区域的探索代价.具体来说,在满足移动机器人运动学模型约束的同时,通过设定扩展节点的回报函数、目标距离函数和平滑度目标函数,缩减无效节点,加速探索过程,从而达到路径规划多目标决策优化的目标.仿真实验中,将本方法用于多种未知的特殊环境,实验结果显示出RL-RRT算法的可行性、有效性及其性能优势.  相似文献   

7.
针对快速探索随机树算法在局部极小区域做大量失败探索的问题,提出一种自适应加权快速探索随机树算法。分析影响快速探索随机树生长的关键因素,提出在树探索的动态过程中应充分利用探索过程的反馈信息,为树节点赋予自适应权重。根据树节点的自适应权重大小,选择树的生长点。仿真结果表明,该方法能有效地提高树探索效率,缩短规划路径长度。  相似文献   

8.
针对快速扩展随机树算法随机性大、收敛速度慢和偏差性的问题,基于基本快速扩展随机树算法,通过采用循环交替迭代的搜索方式生成新节点,双向随机树同时搜索,改进优化了基本快速扩展随机树算法,解决了基本快速扩展随机树算法随机性大、收敛速度慢和偏差性的问题。建立车辆转向模型,确定车辆转向角度约束范围,在算法中增加车辆的转弯角度约束,减少生成路径的偏差性,改善了生成路径的质量。对生成的路径进行节点优化,去除多余的节点,缩短了路径的长度,提高了路径的可行性。采用B样条曲线改善路径的平滑度,在路径折点处插入局部端点,对路径进行平滑度处理,使生成的路径更加符合车辆的行驶条件。用Matlab进行虚拟仿真,验证了该算法的正确性。  相似文献   

9.
10.
11.
莫栋成  刘国栋 《计算机应用》2013,33(8):2289-2292
针对当组态空间内存在大量的窄道时,快速搜索随机树算法(RRT)难以取得连通路径的问题,提出了一种改进的RRT-Connect算法。该算法利用改进的桥梁检测算法来识别和采样窄道,使得路径规划在窄道内能轻易取得连通性;同时将RRT-Connect算法与任意时间算法相结合,显著地减少了RRT-Connect算法的移动代价。每个算法分别运行100次,与RRT-Connect算法相比,改进后的算法成功次数由34提高到93,规划时间由9.3s减少到4.2s。双足机器人的仿真实验结果表明,该算法能在窄道内取得优化路径,同时可以有效地提高路径规划的效率。  相似文献   

12.
针对动态环境下机器人RRT路径规划算法缺乏稳定性和偏离最优解的问题,提出一种基于对比优化的RRT路径规划改进算法。算法在新一周期的环境下,通过对上一周期路径树进行剪枝和重新规划得到一条稳定的路径,同时利用基本RRT算法规划出一条新路径,通过对比两条路径得到较优解。仿真和真实机器人实验结果均表明,改进的算法提高了动态复杂环境下RRT路径规划的稳定性,并保证了规划的路径逼近最优解。  相似文献   

13.
Lifting operations of mobile cranes are one of the commonly-seen and most important activities for prefabrication housing production (PHP) on sites. However, relevant operations are normally based on the experience of operators or project managers, this often leads to low efficiency as well as high accident rate due to dynamic and complex construction sites. Thus, it is important and necessary to develop an appropriate approach to the lifting planning of mobile cranes so as to guide on-site operations. This paper proposes an improved Rapidly-exploring Random Tree (RRT) algorithm for lifting path planning of mobile cranes. Considering the critical role of Nearest Neighbor Search (NNS) in the implementation of RRT algorithm, a novel strategy for searching the nearest neighbor is developed, i.e., Generalized Distance Method and Cell Method. Both methods are tested in simulation-based experiments. The results show that 1) the Generalized distance method not only reduces the search time, but also unifies the unit of distance measurement and clarifies the physical meaning of distance; 2) the Cell method dramatically reduces the traversal range as well as the search time; and 3) both methods improve the quality of lifting path planning of mobile cranes. This improved RRT algorithm enables rapid path planning of mobile cranes in a dynamic and complex construction environment. The outcomes of this research not only contribute to the body of knowledge in spatial path planning of crane lifting operations, but also have the potential of significantly improving efficiency and safety in crane lifting practices.  相似文献   

14.
快速扩展随机树方法(R RT)是解决具有非完整性约束的轮式机器人路径规划问题的一种有效途径。R RT能够在规划过程中引入机器人动力学约束,但是当环境中存在大量障碍物时,R RT算法的路径搜索效率将会降低。另一方面,R RT算法不具有最优性,限制了其在轮式机器人路径规划中的应用。针对经典R RT算法的不足,提出一种混合的路径规划策略,首先通过路径导引点扩展多树R RT结构,利用多树R RT的局部探索与合并特性快速寻找可通行的区域范围,利用启发式搜索算法在可通行区域内快速寻找动力学可行的机器人运动轨迹。仿真与实车实验表明,该方法能够快速有效地解决复杂障碍物环境下的机器人路径规划问题。  相似文献   

15.
一个虚拟人手臂操控的运动规划框架   总被引:1,自引:1,他引:1  
王维  李焱 《计算机应用》2009,29(4):1000-1002
基于双向扩展的启发式快速扩展随机树(RRT)算法,提出了一种虚拟人手臂操控的运动规划框架。该框架根据是否抓握操控对象,将虚拟人的手臂操控划分为接触和搬运两个阶段,分别采用手臂的前向和逆向运动学两种策略进行规划,保证规划结果快速、可靠。通过实验验证了该方法的有效性。  相似文献   

16.
针对在未知环境下实现移动机器人实时的路径规划问题,提出了一种将快速扩展随机树(RRT)算法与视野域自适应的滚动窗口相结合的路径规划算法。该方法实时获取滚动窗口内的局部环境信息,根据环境的变化,滚动窗口视野域进行自适应调整,通过分析滚动窗口内传感器获取的信息,结合改进后的RRT算法筛选出可行的路径,控制移动机器人到达子目标点,在此过程中动态监测规划好的路径,确保路径合理,并重复上述过程,直至到达目标区域。实验对比分析表明,该方法能实时并有效实现未知环境下移动机器人的路径规划。  相似文献   

17.
针对基于随机采样的路径规划算法效率低且采样具有随机性的问题,提出一种应用拓扑结构的高效路径规划算法ATIRRT*。通过引入拓扑节点代替STIRRT*算法中Harris角点检测算法得到的特征点进行采样,给出基于阈值的自适应选择方法来消除路径骨架上提取的冗余特征点,利用该阈值得到的拓扑节点可以使随机树的扩展更具方向性,从而减少寻找初始路径的时间和代价。根据非单一父节点的连接方式加强交叉支路上的拓扑节点间的联系,通过节点扩充策略增加相邻拓扑节点间的节点数量以加快优化算法的收敛。在此基础上定义相关约束条件将初始路径分段并进行逐段优化,以提高优化算法的效率。在常规环境、狭长空间和仿真的室内环境3种类型地图上的仿真结果表明,相较于STIRRT*算法,改进算法在规划路径长度上平均减少8%,在规划时间上平均降低10%,可快速地找到更优的初始路径,同时在优化过程中减少了无用的探索空间,提高了搜索效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号