共查询到19条相似文献,搜索用时 62 毫秒
1.
基于主成分分析的无监督异常检测 总被引:5,自引:0,他引:5
入侵检测系统在训练过程中需要大量有标识的监督数据进行学习,不利于其应用和推广.为了解决该问题,提出了一种基于主成分分析的无监督异常检测方法,在最小均方误差原则下学习样本的主要特征,经过压缩和还原的互逆过程后能最大限度地复制样本信息,从而根据均方误差的差异检测出异常信息.构建的仿真系统经过实验证明,基于主成分分析的无监督异常检测方法能够在无需专家前期参与的情况下检测出入侵,实验结果验证了其有效性. 相似文献
2.
针对旁路信号样本在高维空间中的分布,提出了一种基于核主成分分析的硬件木马检测方法,该方法能够找出旁路信号样本分布中的非线性规律,将高维的旁路信号映射到低维子空间同时更精确地反映旁路信号样本的分布特性,从而发现由木马引起的非线性特征差异;针对AES加密电路植入约占电路3%的组合型木马并进行检测,实验结果表明,该方法能够有效分辨基准电路与含木马电路之间旁路信号的非线性特征差异,实现木马的检测,并取得比K-L变换更好的检测效果。 相似文献
3.
基于多尺度主成分分析的全网络异常检测方法 总被引:1,自引:0,他引:1
网络异常检测对于保证网络的可靠运行具有重要意义,而现有的异常检测方法仅仅单独利用流量的时间相关性或空间相关性.针对这一不足,同时考虑流量矩阵的时空相关性,提出了一种基于MSPCA的全网络异常检测方法.该方法综合利用小波变换具有的多尺度建模能力和PCA具有的降维能力对正常流量进行建模,然后采用Shewart控制图和EWMA控制图分析残余流量.此外,还利用滑动窗口机制对MSPCA异常检测方法进行在线扩展,提出了一种在线的MSPCA异常检测方法.因特网实测数据分析和模拟实验分析表明:MSPCA算法的检测性能优于PCA算法和近期提出的KLE算法;在线MSPCA算法的检测性能非常接近MSPCA算法,且单步执行时间很短,完全满足实时检测的需要. 相似文献
4.
5.
一种基于聚类和主成分分析的异常检测方法 总被引:1,自引:0,他引:1
提出了一种基于聚类和主成分分析的异常检测方法,该方法利用聚类分析将训练数据划分为不同的子集,从而得到正常模式在特征空间中的分布,然后利用主成分分析来提取各行为子集的特征轮廓,最后利用各子集的PCA变换矩阵进行检测。实验结果证明了基于主成分分析的异常检测方法的有效性。 相似文献
6.
现有的图像模糊篡改检测算法通常提取模糊操作引入的某单一特征进行判断,为更好地提高算法检测效率,提出基于核主成分分析的模糊篡改检测算法.通过奇异值分解提取第一组特征,计算图像二次模糊相关性作为第二组特征,计算图像质量因子作为第三组特征.运用核主成分分析方法实现多特征融合.采用支持向量机进行判断,从而实现模糊篡改检测.实验表明:该算法能够有效地检测数字篡改图像的模糊操作痕迹,并能对模糊篡改区域进行准确定位. 相似文献
7.
真实网络流量包括大量特征属性,现有基于特征分析的异常流量检测方法无法满足高维特征分析要求。提出一种基于主成分分析和禁忌搜索(PCA-TS)的流量特征选择算法结合决策树分类的异常流量检测方法,通过PCA-TS对高维特征进行特征约减和近优特征子集选择,为决策树分类方法提供有效的低维特征属性,结合决策树分类精度和处理效率高的优点,采用半监督学习方式进行异常流量实时检测。实验表明,与传统异常检测方法相比,此方法具有更高的检测精度和更低的误检率,其检测性能受样本规模影响较小,且对未知异常可以进行有效检测 相似文献
8.
9.
车牌识别是智能交通系统的核心技术,车牌检测是车牌识别技术中至关重要的一步。传统的车牌检测方法多利用浅层的人工特征,在复杂场景下的车牌检测率不高。基于主成分分析网络的车牌检测算法,能够无监督地逐级提取车牌深层特征,可有效提高算法的鲁棒性。算法首先采用Sobel算子边缘检测和边缘对称性分析获取车牌候选区域;然后将候选区域输入到主成分分析网络中进行车牌深度特征提取,并利用支持向量机实现对车牌区域的判别;最后采用非极大值抑制算法标记最佳车牌检测区域。利用收集的复杂场景下的车辆图像对所提方法的参数进行分析,并将其与传统方法进行比较。实验结果表明,所提算法的鲁棒性高,性能优于传统的车牌检测方法。 相似文献
10.
PCA和KPCA都是基于欧氏距离提出的,这种距离对离群数据点比较敏感,而余弦角距离对离群数据更为鲁棒,在很多情况下具有更好的性能。充分利用余弦角距离的优势,提出两种新的特征抽取算法——基于余弦角距离的主成分分析(PCAC)和基于余弦角距离的核主成分分析(KPCAC)。在YALE人脸数据库与PolyU掌纹数据库上的实验表明,PCAC比PCA取得了更好的效果,KPCAC也表现出了很好的性能。 相似文献
11.
基于核主成分分析的步态识别方法 总被引:2,自引:0,他引:2
为了从多帧步态序列中更有效地提取步态特征并实时性地进行身份识别,提出一种有效的基于平均步态能量图(MGEI)的核主成分分析(KPCA)的身份识别方法。通过预处理技术提取出运动人体的侧面轮廓,根据步态下肢的摆动距离统计出步态周期,得到MGEI。KPCA采用非线性方法提取主成分,描述待识别图像中多个像素之间的相关性。利用KPCA的方法在高维空间对MGEI提取特征,选择合适的核函数,用方差倒数加权欧氏距离进行身份识别。实验结果表明,该算法具有较好的识别性能,并且耗时大大缩短。 相似文献
12.
为更加准确地从大量数据中检测出存在的小量异常数据,提出基于核主成分分析的超多面体数据描述方法.利用核主成分分析对数据进行非线性映射,在此基础上使用主成分信息在N维空间中建立2N个超平面,组合这些超平面构造一个超多面体模型,为现有的数据描述类方法提供更多选择.通过第三方数据集并与支持向量数据描述方法比较,验证了在某些分布下超多面体比超球体的支撑域适合训练数据,得到了更好的分类效果,表明了该方法的有效性. 相似文献
13.
针对化工过程数据的多尺度性和非线性特性,提出了一种多尺度核主元分析方法(MSKPCA)监控过程的运行状态。使用小波变换在不同尺度下分解测量信号.然后借助于核函数对分解后的数据进行非线性变换,在变换后的线性空间中用主元分析(PCA)提取过程数据的主要特征,构造监控统计量T2和Q来检测故障。在此基础上,提出了一种贡献图方法.计算过程变量对故障的贡献量,用于故障变量的分离。在TE过程上的监控结果表明,MSKPCA可以比PCA和动态PCA更迅速地检测到过程故障,贡献图方法能够正确地分离故障变量。 相似文献
14.
提出了一种基于主分量分析和属性距离和的孤立点检测算法。该方法首先通过主分量分析方法从众多属性中提取出满足累计贡献率的主分量,同时利用PCA变换矩阵把原始数据集转换到由主分量组成的新的特征空间上,之后对转换后的数据集用属性距离和的方法对孤立点进行检测。实验结果证明了基于主分量分析和属性距离和的孤立点检测算法的有效性。 相似文献
15.
针对复杂环境下的多变量工业过程在线故障检测问题, 提出基于集成核主分量分析的解决方法. 该方法首先求出样本映射后的无限维空间的多组近似基, 将主分量分析问题特征向量的解空间限定在近似基张成空间求解; 然后集成特征向量和特征值, 并计算Hotelling ??2 统计量和平方预报误差; 最后据此判断检测结果. 该方法对Tennessee Eastman 过程故障检测样本进行测试, 并与其他两种方法进行对比. 测试结果表明了所提出方法的有效性.
相似文献16.
针对核独立成分分析故障检测时忽略各独立成分分量对系统故障贡献度的差异, 提出一种基于加权核独立成分分析的故障检测方法. 使用核独立成分分析提取过程变量的独立成分, 根据核密度估计衡量各独立成分分量对系统故障的贡献度, 对各独立成分分量赋予不同权重, 突出包含有用信息的独立成分分量, 引入局部离群因子在特征空间构造统计量进行故障检测. 基于数值仿真和Tennessee Eastman 数据集的仿真结果表明了所提出方法的优越性.
相似文献17.
针对工业系统监测数据为非线性,且难以辨识复杂工作过程中故障位置的问题,提出一种基于分块核主成分分析(BKPCA)和最小二乘支持向量机(LS–SVM)的集成故障检测方法.首先对系统监测变量进行分块,使用KPCA对每个分块在特征空间中建立T2和平方预测误差(SPE)统计量来实时监测系统健康状态,并使用LS–SVM对上述过程检测出来的故障数据进行再次判断.随后计算出现故障后计算每一分块的故障贡献率,进而确定发生故障的分块.由于采用了并行分块算法,可以较简单的确定故障发生位置,提高计算效率,同时LS–SVM方法的应用也可以提升故障检测的精度.使用田纳西–伊斯曼化工(TE)过程数据对本文所提方法进行仿真验证,试验结果表明所提方法取得了较好效果. 相似文献
18.
提出一种基于张量代数的核主成分分析方法来进行特征提取。该方法可以有效避免维数过高导致计算消耗过大,并合理利用已知训练样本的类别信息。算法先对每一类目标使用核主成分分析手段以形成其各自的特征空间;再通过张量积将所有的特征映射到一高维线性空间;随后直接在此空间上进行线性的主成分分析,即可构造出了适宜的特征空间。其既能有效反映各类样本特征,又能比直接使用核主成分的方法极大降低计算所需的消耗。目标识别实验表明,该方法与直接使用核主成分方法构造特征空间的方法进行比较,在保持识别效果的前提下,可以明显降低计算的消耗与存储的需求。 相似文献