首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum nitride powders were synthesized by carbothermal reduction-nitridation method using Al(OH)3, carbon black and Y2O3 as raw materials. The change of phase, microstructure and densification during the AlN synthesis and sintering process were investigated and the effects of Y2O3 was discussed. The results showed that Y2O3 reacted with Al2O3 to form yttrium aluminates of YAlO3 (orthorhombic and hexagonal phases), Y4Al2O9 and Y3Al5O12 at the low temperature of 1350 °C. YAlO3 could firstly be transformed into Y2O3 and then completely into YN when the firing temperature and holding time increased. However, YN could be oxidized into Y2O3 again after the carbon removal at 700 °C in the air atmosphere. There were two ways generating AlN when adding Y2O3 and the possible mechanism was proposed. Y2O3 from YN oxidation favored the densification of AlN ceramics because the liquid had better flowability and distribution in the sintering process at 1800 °C.  相似文献   

2.
The aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives was investigated for two different additive systems, one the mixture of Y2O3 and Al2O3 in a 3:5 molar ratio and the other directly Y3Al5O12. The investigation involved the study of the colloidal stability of the different components, and the comparison of the rheological behaviour of concentrated suspensions of SiC, SiC + 3Y2O3:5Al2O3, and SiC + Y3Al5O12 as a function of the sonication condition, dispersant content, and solid loading. This allowed appropriate conditions for the preparation of well-dispersed, single-phase, and multi-component concentrated suspensions of SiC to be identified. It was found that the multi-component suspensions have better rheological behaviour than the single-phase ones, and that in terms of rheology and slip casting the Y3Al5O12 additives are more functional than the conventional 3Y2O3 + 5Al2O3 additives. It was also demonstrated that the Y3Al5O12 additive is as effective as the 3Y2O3 + 5Al2O3 additive in densifying SiC via liquid-phase sintering, with there existing no differences either in the microstructure or in room-temperature mechanical properties (hardness, toughness, and fracture mode). Implications of interest for the wet-shaping of complex SiC parts are discussed.  相似文献   

3.
The oxidation behaviour of pressureless liquid-phase-sintered (PLPS) α-SiC was investigated as a function of the sintering additives of 5Al2O3 + 3RE2O3 (RE = La, Nd, Y, Er, Tm, or Yb) by thermogravimetry experiments in oxygen at 1075–1400 °C for up to 22 h. It was found that the oxidation is in all cases passive and protective, with kinetics governed by the arctan-rate law. This is because the PLPS SiC ceramics develop oxide scales having no cracks or open porosity and accordingly prevent the parent material from direct contact with oxygen. In addition, these oxide scales crystallize gradually during the exposure to the oxidizing atmosphere with the attendant reduction in the amorphous cross-section available for oxygen diffusion. It was also found that the rate-limiting mechanism of the oxidation is outward diffusion of RE3+ cations from the intergranular phase into the oxide scale, and that the activation energy of the oxidation increases with increasing size of the RE3+ cation. It was also observed that the oxidation of PLPS SiC increases with increasing size of the RE3+ cation, an effect that is especially marked for cation sizes above 0.9 Å because the oxidation rate becomes several orders of magnitude faster. This trend is attributable to the oxide scales being more crystalline, and containing crystals that are more refractory and amorphous residual phases that are more viscous as the size of the RE3+ cation decreases. Finally, implications for the design of PLPS SiC ceramics with superior oxidation resistance are discussed.  相似文献   

4.
In this paper, silicon carbide ceramics were prepared by aqueous gelcasting and pressureless sintering using Al2O3 and Y2O3 as the sintering additives. In order to develop well dispersed SiC slurries in the presence of sintering additives, the Al2O3 and Y2O3 powder was treated in the citric acid solution in advance. Zeta potential measurement showed that the isoelectric point (IEP) of Al2O3 and Y2O3 powder moved toward low pH region after treatment. Rheological measurement confirmed that the addition of as-treated powder showed very limited influence on the slurry properties as compared to that of untreated powder. SiC slurries with solid content of 54 vol% and enough fluidity can be developed. After gelcasting and pressureless sintering, SiC ceramics with nearly full density, fine grained and homogeneous microstructure can be obtained. Results showed that the surface treatment of Al2O3 and Y2O3 with citric acid is effective for the gelcasting process of SiC.  相似文献   

5.
SiC ceramics were prepared from nanosized β-SiC powder with different compositions of AlN and Y2O3 sintering additives by spark plasma sintering (SPS) at 1900 °C for 600 s in N2. The relative density of the sintered SiC specimens increased with increasing amount of AlN, reaching a relative density higher than 99%, while at the same time grain size decreased significantly. The smallest average grain size of 150 nm was observed for SiC sample sintered with 10 vol% of additives consisting of 90 mol% AlN and 10 mol% Y2O3. Fully dense nanostructured SiC ceramics with inhibited grain growth were obtained by the AlN additive and SPS technique. The flexural strength of the SiC body containing 70 mol% AlN and 30 mol% Y2O3 additives reached the maximum value of 1000 MPa. The SiC bodies prepared with AlN and Y2O3 additives had the fracture toughness of around 2.5 MPam1/2.  相似文献   

6.
It is known that SiC powders can be densified at relatively low temperatures (1850–2000 °C) with some oxide additions. In this work the densification behavior, microstructure and mechanical properties (bending strength, fracture toughness, hardness) of SiC ceramics pressureless sintered with different additions chosen from oxide groups: Al2O3 + Y2O3, Al2O3 + Y2O3 + MgO, were investigated. It was found that oxide additives facilitate densification of sinters and significantly improve mechanical properties of SiC ceramics. The best activating oxide additions have been identified.  相似文献   

7.
Sub-micron sized SiC additions can be used to increase the wear resistance and change the fracture mode of Al2O3. However, these additions also restrict sintering.Al2O3 and Al2O3–5%SiC ‘nanocomposites’ were prepared from alumina powders of high purity and of commercial-purity, with or without the addition of Y2O3. The effects of these compositional variables on sintering rate, final density and grain boundary composition were investigated. A direct comparison with Al2O3–SiO2 composites was also made, as it has been proposed that SiC partially oxidises during processing of Al2O3–SiC nanocomposites.The addition of 5 vol.% SiC to Al2O3 hindered densification, as did addition of 0.15 wt.% Y2O3 or 0.1 wt.% SiO2. In contrast, the addition of 0.15 wt.% Y2O3 to Al2O3–5% SiC nanocomposites improved densification.The composition of Al2O3–Al2O3 grain boundaries in these materials was studied using STEM and EDX microanalysis. The addition of SiC and SiO2 caused segregation of Si, and Y2O3 addition caused segregation of Y. The segregation of each element was equivalent to <10% of a monolayer at the grain boundary. However, if SiC and Y2O3 were simultaneously added the segregation increased to 40% of a monolayer. The enhanced segregation was attributed to increased oxidation of SiC in the presence of Y2O3 allowing formation of a SiO2–Al2O3–Y2O3 eutectic phase or a segregated layer which may explain the improvement in sintering rate when Y2O3 was added to nanocomposites.  相似文献   

8.
9.
The high sintering temperature required for aluminum nitride (AlN) at typically 1800 °C, is an impediment to its development as an engineering material. Spark plasma sintering (SPS) of AlN is carried out with samarium oxide (Sm2O3) as sintering additive at a sintering temperature as low as 1500–1600 °C. The effect of sintering temperature and SPS cycle on the microstructure and performance of AlN is studied. There appears to be a direct correlation between SPS temperature and number of repeated SPS sintering cycle per sample with the density of the final sintered sample. The addition of Sm2O3 as a sintering aid (1 and 3 wt.%) improves the properties and density of AlN noticeably. Thermal conductivity of AlN samples improves with increase in number of SPS cycle (maximum of 2) and sintering temperature (up to 1600 °C). Thermal conductivity is found to be greatly improved with the presence of Sm2O3 as sintering additive, with a thermal conductivity value about 118 W m−1 K−1) for the 3 wt.% Sm2O3-doped AlN sample SPS at 1500 °C for 3 min. Dielectric constant of the sintered AlN samples is dependent on the relative density of the samples. The number of repeated SPS cycle and sintering aid do not, however, cause significant elevation of the dielectric constant of the final sintered samples. Microstructures of the AlN samples show that, densification of AlN sample is effectively enhanced through increase in the operating SPS temperature and the employment of multiple SPS cycles. Addition of Sm2O3 greatly improves the densification of AlN sample while maintaining a fine grain structure. The Sm2O3 dopant modifies the microstructures to decidedly faceted AlN grains, resulting in the flattening of AlN–AlN grain contacts.  相似文献   

10.
The influence of additive composition on the electrical resistivity of hot-pressed liquid-phase sintered (LPS)-SiC was investigated using AlN–RE2O3 (RE = Sc, Nd, Eu, Gd, Ho, Er, Lu) mixtures at a molar ratio of 60:40. It was found that all specimens could be sintered to densities >95% of the theoretical density by adding 5 wt% in situ-synthesized nano-sized SiC and 1 wt% AlN–RE2O3 additives. Six out of seven SiC ceramics showed very low electrical resistivity on the order of 10?4 Ω m. This low electrical resistivity was attributed to the growth of nitrogen-doped SiC grains and the confinement of non-conducting RE-containing phases in the junction areas. The SiC ceramics sintered with AlN–Lu2O3 showed a relatively high electrical resistivity (~10?2 Ω m) due to its lower carrier density (~1017 cm?3), which was caused by the growth of faceted grains and the resulting weak interface between SiC grains.  相似文献   

11.
Effects of slow-cooling at high temperatures and annealing at intermediate temperatures on dielectric loss tangent of AlN ceramics were explored. Y2O3 was added as a sintering additive to AlN powders, and the powders were pressureless-sintered at 1900 °C for 2 h in a nitrogen flow atmosphere. In succession to the sintering, AlN samples were slow-cooled at a rate of 1 °C/min from 1900 to 1750 °C and/or annealed at 970 °C for 4 h. Al5Y3O12 was detected in the AlN ceramics obtained by the slow-cooling and AlYO3 was found in the ceramics cooled at a rate of 30 °C/min. AlN ceramics with a relative density of 0.986 were obtained by the slow-cooling method. On the other hand, very low tan δ values between 2.6 and 4.6 × 10−4 were obtained when the AlN ceramics were annealed at 970 °C for 4 h.  相似文献   

12.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications.  相似文献   

13.
We report on how the mechanical properties of sintered ceramics (i.e., a random mixture of equiaxed grains) with the Al2O3–Y2O3–ZrO2 eutectic composition compare with those of rapidly or directionally solidified Al2O3–Y2O3–ZrO2 eutectic melts. Ceramic microcomposites with the Al2O3–Y2O3–ZrO2 eutectic composition were fabricated by sintering in air at 1400–1500 °C, or hot pressing at 1300–1400 °C. Fully dense, three phase composites of Al2O3, Y2O3-stabilized ZrO2 and YAG with grain sizes ranging from 0.4 to 0.8 μm were obtained. The grain size of the three phases was controlled by the size of the initial powders. Annealing at 1500 °C for 96 h resulted in grain sizes of 0.5–1.8 μm. The finest scale microcomposite had a maximum hardness of 19 GPa and a four-point bend strength of 282 MPa. The fracture toughness, as determined by Vickers indentation and indented four-point bending methods, ranged from 2.3 to 4.7 MPa m1/2. Although strengths and fracture toughnesses are lower than some directionally or rapidly solidified eutectic composites, the intergranular fracture patterns in the sintered ceramic suggest that ceramic microcomposites have the potential to be tailored to yield stronger, tougher composites that may be comparable with melt solidified eutectic composites.  相似文献   

14.
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics.  相似文献   

15.
16.
《Ceramics International》2016,42(15):16640-16643
Transparent Y2O3 ceramics were fabricated by the solid-state reaction and vacuum sintering method using La2O3, ZrO2 and Al2O3 as sintering aids. The microstructure of the Y2O3 ceramics sintered from 1550 °C to 1800 °C for 8 h were analyzed by SEM. The sintering process of the Y2O3 transparent ceramics was optimized. The results showed that when the samples were sintered at 1800 °C for 8 h under vacuum, the average grain sizes of the ceramics were about 3.5 µm. Furthermore, the transmittance of Y2O3 ceramic sintered at 1800 °C for 8 h was 82.1% at the wavelength around the 1100 nm (1 mm thickness), which was close to its theoretical value. Moreover, the refractive index of the Y2O3 transparent ceramic in the temperature range from 30 °C to 400 °C were measured by the spectroscopic ellipsometry method.  相似文献   

17.
The influence of Y2O3 addition on electrical properties of β-SiC ceramics has been investigated. Polycrystalline SiC samples obtained by hot-pressing SiC–Y2O3 powder mixtures in nitrogen (N) atmosphere contain Y2O3 clusters segregated between SiC grains. Y2O3 forms a Y–Si-oxycarbonitride phase during sintering by reacting with SiO2 and SiC and by dissolution of N from the atmosphere; this induces N doping into the SiC grains during the process of grain growth. The SiC samples exhibit an electrical resistivity of ~10?3 Ω cm and a carrier density of ~1020 cm?3, which are ascribed to donor states derived from N impurities. The increase in defect density with increasing Y2O3 content is likely to be a main limiting factor of the electrical conductivity of SiC ceramics.  相似文献   

18.
《Ceramics International》2017,43(11):8018-8022
In this work, Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 ceramic varistors were prepared through traditional ceramic processing, and the effect of Sm2O3 on the resulting microstructure and electrical properties was investigated. The results demonstrated that the ceramics were composed mainly of SnO2 and Zn2SnO4, and Sm was distributed homogeneously in the grains and along the grain boundaries. With 0.2 mol% Sm2O3 doping, the grain growth was obviously promoted. Further increases in Sm2O3 to 0.4 mol% resulted in trace amount of SiO2 and segregations containing elemental Sm via X-ray diffraction patterns and microstructure photos, respectively. In the sample doped with 0.3 mol% Sm2O3, optimal electrical characteristics of α=9.4, EB=10 V/mm, JL=46 μA/cm2 and ε′=1.2×104 were obtained. Simultaneously, the sample doped with 0.3 mol% Sm2O3 had the lowest conductance activation energy of 0.16 eV at temperatures lower than 110 °C. This good performance indicates that Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 composite ceramics are viable candidate for the manufacture of capacitor-varistor functional devices.  相似文献   

19.
Fifteen kinds of sodium rare earth silicate glasses and ceramics with (Na2O)35.7(RE2O3)7.2(SiO2)57.1 (RE = Y, Sm, Gd, Dy, Ho, Er and Yb) composition were synthesized from a mixture of Na2CO3, RE2O3 and SiO2. The densities of the glasses were in fairly good agreement with the theoretical densities and were 0.2–0.41 g cm−3 larger than those of the polycrystalline ceramics. The conductivities of the glasses are 1–2 orders lower than those of the ceramics and the highest electrical conductivity was achieved for the Yb ceramic sample with the smallest ion radius of RE3+. The electromotive force, EMF, of the potentiometric CO2 gas sensors using (Na2O)35.7(Y2O3)7.2(SiO2)57.1 glass and ceramic increased linearly with an increase in the logarithm of CO2 partial pressure, in accordance with Nernst's law. It was suggested from the slope of Nernst's equation that the two electron-transfer reaction associated with the carbon dioxide molecule takes place at the detection electrode above 450 °C.  相似文献   

20.
《Ceramics International》2016,42(8):9448-9454
A dense alumina fiber reinforced silicon carbide matrix composites (Al2O3/SiC) modified with Ti3Si(Al)C2 were prepared by a joint process of chemical vapor infiltration, slurry infiltration and reactive melt infiltration. The conductive Ti3Si(Al)C2 phase introduced into the matrix modified the microstructure of Al2O3/SiC. The refined microstructure was composed of conductive phase, semiconductive phase and insulating phase, which led to admirable electromagnetic shielding properties. Electromagnetic interference shielding effectiveness (EMI SE) of Al2O3/SiC and Ti3Si(Al)C2 modified Al2O3/SiC were investigated over the frequency range of 8.2–12.4 GHz. The EMI SE of Al2O3/SiC-Ti3Si(Al)C2 exhibited a significant increase from 27.6 to 42.1 dB compared with that of Al2O3/SiC. The reflection and absorption shielding effectiveness increased simultaneously with the increase of the electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号