首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 181 毫秒
1.
关联规则挖掘是数据挖掘领域的重要研究方向之一。频繁项集的挖掘是关联规则挖掘的第一步,也是最重要的步骤。FP-Growth(Frequent Pattern-Growth)算法因其挖掘效率以及空间复杂度方面的优势被广泛应用于频繁项集挖掘任务中。面对海量数据,FP-Growth算法挖掘效率变得极低甚至失效。在Hadoop大数据平台上实现的基于MapReduce框架的并行FP-Growth算法——PFP算法解决在处理大规模数据时传统算法失效的问题,但是由于其将每次执行之后的中间结果输出到磁盘,降低算法执行效率。为提高并行FP-Growth算法执行效率,提出一种基于Spark的SPFPG算法。该算法运用负载均衡思想对分组策略进行改进,综合考虑分区计算量和FP-Tree规模两个因素,保证每个组之间负载总和近似相等。在Spark上实现FP-Growth算法——SFPG算法的基础上,实现优化后的SPFPG算法。实验结果表明,SPFPG算法相比SFPG算法挖掘效率更高,且算法具有良好的扩展性。  相似文献   

2.
频繁模式挖掘作为模式识别的重要问题,一直受到研究者的广泛关注。FP-Growth算法因其高效快速的特点,被大量应用于频繁模式的挖掘任务中。然而,该算法依赖于内存运行的特性,使其难以适应大规模数据计算。针对上述问题,围绕大规模数据集下频繁模式挖掘展开研究,基于Spark框架,通过对支持度计数和分组过程的优化改进了FP-Growth算法,并实现了算法的分布式计算和计算资源的动态分配。运算过程中产生的中间结果均保存在内存中,因此有效减少数据的I/O消耗,提高算法的运行效率。实验结果表明,经优化后的算法在面向大规模数据时要优于传统的FP-Growth算法。  相似文献   

3.
针对大数据中的频繁项集挖掘问题,提出一种基于Spark框架的FP-Growth频繁项集并行挖掘算法。首先,根据垂直布局思想将数据按照事务标识符垂直排列,以此解决扫描整个数据集的缺陷。然后,通过FP-Growth算法构建频繁模式树,并生成频繁1-项集。接着,通过扫描垂直数据集来计算项集的支持度,从而识别出非频繁项,并将其从数据集中删除以降低数据尺寸。最后,通过迭代过程来生成频繁 -项集。在标准数据集上的实验结果表明,该算法能够有效挖掘出频繁项集,在执行时间方面具有很大的优越性。  相似文献   

4.
一种基于FP-Growth的频繁项目集并行挖掘算法   总被引:1,自引:0,他引:1  
FP-Growth算法是基于FP树挖掘频繁项目集的经典算法,为提高FP-Growth算法挖掘大规模数据频繁项目集的效率,提出了一种基于FP-Growth的频繁项目集并行挖掘算法FPPM。该算法基于Map/Reduce并行模型,在每个计算节点上首先构造局部频繁模式树,并对之进行挖掘得到局部频繁项目集,然后合并局部频繁项目集以得到全局频繁项集,由于此时得到的结果并不完备,所以对合并后未达到最小支持度阈值的项目集,重新计算其支持数。介绍了FPPM算法的设计思想,测试了其性能。实验结果表明FPPM算法具有较好的可扩展性。  相似文献   

5.
FP-Growth算法的改进   总被引:1,自引:0,他引:1  
基于FP树的FP-Growth算法在挖掘频繁模式过程中需要两次扫描事务集来建立FP树,这不仅降低了算法的效率,而且给数据库服务器带来负担.在原有经典FP-Growth算法的基础上,提出一种基于二维表的方法对原算法进行改进,改进算法通过使用二维向量记录频繁度仅需遍历一次事务集,从而省略FP-Growth算法在生成新条件FP树时对条件模式基的第一次遍历,大大缩短了建立FP树的时间.实验结果表明,该算法的改进优于经典算法.  相似文献   

6.
频繁项集挖掘FIM(Frequent Itemsets Mining)是关联规则挖掘算法的重要组成部分。而经典Apriori和FP-Growth算法在海量数据处理时面临内存占用、计算性能等方面的瓶颈。基于Hadoop云计算平台,提出适用大数据处理的频繁项集挖掘HBFP(High Balanced parallel FP-growth)算法,设计后缀模式转换的数据分割及均衡任务分组方案,使计算节点本地拥有计算所依赖的数据,实现不同节点相互独立的并行数据挖掘方法,并保证算法全局的负载均衡特性。实验数据表明,HBFP算法能均匀地将计算量分散至不同计算节点,并行且相互独立地进行FP-Growth挖掘过程,算法效率提高了约12%,算法全局稳定性及效率取得提升。  相似文献   

7.
针对FP-Growth算法中频繁模式树的遍历低效问题,提出了一种无项头表的频繁模式增长算法。该算法利用递归回溯的方式遍历频繁模式树以求取条件模式基,解决了对同一树路径多次重复遍历的问题。从理论分析和实际挖掘能力两方面,将新算法与FP-Growth算法进行了对比。结果表明,新算法有效减少了条件模式基的搜索开销,使频繁模式挖掘的效率提高了2~5倍,在时间和空间性能上均优于FP-Growth算法。将该算法应用于通信告警关联规则挖掘,较快地挖掘出了关联规则结果,且正确规则的覆盖率达到了83.3%。  相似文献   

8.
关联规则挖掘算法FP-Growth虽然效率比Apriori要快一个数量级,但存在频繁模式树可能过大而内存无法容纳和数据挖掘过程串行处理等两大缺点。提出一种分布式并行关联规则挖掘算法,该算法针对分布式应用数据架构,不需要产生全局FPtree,避免全局FP-tree可能过大而内存无法容纳的问题,算法在各个主要步骤上都实现了并行处理。算法测试结果和分析表明,与传统的关联规则挖掘算法FP-Growth相比,该算法通过多节点分布式并行处理显著提高了执行效率和处理能力。  相似文献   

9.
虽然FP-Growth算法能够有效地从数据库中挖掘频繁模式,但如何由其挖掘出的频繁模式中高效地产生关联规则仍是一个相当复杂的问题。该文提出了用于组织频繁模式的线索频繁模式树(TFPT)和一个从TFPT中挖掘关联规则的高效算法—最短模式优先算法(SPF)。挖掘模式Y的关联规则时,SPF算法应用了两个优化策略,避免了对大量的不可能成为规则XY-X左部的Y的子集的检查,从而获得了很好的性能。实验表明:与类FP-Growth算法结合时,SPF算法运行速度远远快于Apriori算法,并有相当好的可伸缩性。  相似文献   

10.
如何在海量数据集中提高频繁项集的挖掘效率是目前研究的热点.随着数据量的不断增长,使用传统算法产生频繁项集的计算代价依然很高.为此,提出一种基于Spark的频繁项集快速挖掘算法(fast mining algorithm of frequent itemset based on spark,Fmafibs),利用位运算速度快的特点,设计了一种新颖的模式增长策略.该算法首先采用位串表达项集,利用位运算来快速生成候选项集;其次,针对超长位串计算效率低的问题,考虑将事务垂直分组处理,将同一事务不同组之间的频繁项集通过连接获得候选项集,最后进行聚合筛选得到最终频繁项集.算法在Spark环境下,以频繁项集挖掘领域基准数据集进行实验验证.实验结果表明所提方法在保证挖掘结果准确的同时,有效地提高了挖掘效率.  相似文献   

11.
基于Hadoop的FP-Growth关联规则并行改进算法   总被引:1,自引:0,他引:1  
大数据环境下,传统的串行FP-Growth算法在处理海量数据时,占用内存过大、频繁项多,适用于大数据情况的PFP(Parallel FP-Growth)算法存在数据量增大无法处理的缺陷。针对这些问题,本文提出了基于Hadoop的负载均衡数据分割FP-Growth并行算法。在Hadoop平台下,本文使用负载均衡和数据分割相结合的方式对原始事务数据集分片实现并行化。实验证明基于Hadoop的负载均衡数据分割FP-Growth并行算法在处理数据量和效率上有所提高。  相似文献   

12.
Apriori和FP-Growth算法是频繁模式挖掘中的经典算法,由于Apriori存在更多缺陷,因此FP-Growth是单机计算环境下比较高效的算法。然而,对于非并行计算在大数据时代遇到的瓶颈,提出一种基于事务中项间联通权重矩阵的负载平衡并行频繁模式增长算法CWBPFP。算法在Spark框架上实现并行计算,数据分组时利用负载均衡策略,存入分组的数据是相应频繁项的编码。每个工作节点将分组数据中每一个事物中项的联通信息存入一个下三角联通权重矩阵中,使用被约束子树来加快每个工作节点挖掘频繁模式时创建条件FP-tree的速度,再用联通权重矩阵避免每次挖掘分组中频繁模式时对条件模式基的第一次扫描。由于联通权重矩阵和被约束子树的结合应用于每一个工作节点的FP-tree挖掘过程,因此提升了并行挖掘FP-tree性能。通过实验表明,所提出的并行算法对大的数据有较高性能和可扩展性。  相似文献   

13.
针对并行深度森林在大数据环境下存在冗余及无关特征过多、两端特征利用率过低、模型收敛速度慢以及级联森林并行效率低等问题,提出了基于Spark和NRSCA策略的并行深度森林算法——PDF-SNRSCA。首先,该算法提出了基于邻域粗糙集和Fisher score的特征选择策略(FS-NRS),通过衡量特征的相关性和冗余度,对特征进行过滤,有效减少了冗余及无关特征的数量;其次,提出了一种随机选择和等距提取的扫描策略(S-RSEE),保证了所有特征能够同概率被利用,解决了多粒度扫描两端特征利用率低的问题;最后,结合Spark框架,实现级联森林并行化训练,提出了基于重要性指数的特征筛选机制(FFM-II),筛选出非关键性特征,平衡增强类向量与原始类向量维度,从而加快模型收敛速度,同时设计了基于SCA的任务调度机制(TSM-SCA),将任务重新分配,保证集群负载均衡,解决了级联森林并行效率低的问题。实验表明,PDF-SNRSCA算法能有效提高深度森林的分类效果,且对深度森林并行化训练的效率也有大幅提升。  相似文献   

14.
针对云服务器使用过程中参数异常的问题,介绍了云服务器的参数数据获取、数据清洗整理和有效分析过程。针对现有频繁模式增长(FP-Growth)算法中存在的条件FP-tree构建过程过于冗余以及数据量级越大处理效率越低的问题,提出了一种改进的FP-Growth算法,引入数组标记策略,每个FP-tree节点只保留指向父节点的指针。改进算法在挖掘过程中无需生成条件FP-tree,减少了时空消耗。实验结果表明,改进后的FP-Growth并行算法能够有效地提高云平台虚拟机异常数据的关联分析效率,并且改进算法也适用于较大规模数据集的数据挖掘工作。  相似文献   

15.
针对内存计算框架Spark在作业Shuffle阶段一次分区产生的数据倾斜问题,提出一种内存计算框架的迭代填充分区映射算法(IFPM)。首先,分析Spark作业的执行机制,建立作业效率模型和分区映射模型,给出作业执行时间和分配倾斜度的定义,证明这些定义与作业执行效率的因果逻辑关系;然后,根据模型和定义求解,设计扩展式数据分区算法(EPA)和迭代式分区映射算法(IMA),在Map端建立一对多分区函数,并通过分区函数将部分数据填入扩展区内,在数据分布局部感知后再执行扩展区迭代式的多轮数据分配,根据Reduce端已分配数据量建立适应性的扩展区映射规则,对原生区的数据倾斜进行逐步修正,以此保障数据分配的均衡性。实验结果表明,在不同源数据分布条件下,算法均提高了作业Shuffle过程分区映射合理性,缩减了宽依赖Stage的同步时间,提高了作业执行效率。  相似文献   

16.
极限学习机算法虽然训练速度较快,但包含了大量矩阵运算,因此其在面对大数据量时,处理效率依然缓慢。在充分研究Spark分布式数据集并行计算机制的基础上,设计了核心环节矩阵乘法的并行计算方案,并对基于Spark的极限学习机并行化算法进行了设计与实现。为方便性能比较,同时实现了基于Hadoop MapReduce的极限学习机并行化算法。实验结果表明,基于Spark的极限学习机并行化算法相比于Hadoop MapReduce版本的运行时间明显缩短,而且若处理数据量越大,Spark在效率方面的优势就越明显。  相似文献   

17.
基于对角划分的矩阵乘并行算法   总被引:5,自引:0,他引:5  
提出了一种新的基于对角划分的矩阵乘并行算法,它在以往行列划分策略的基础上,采用基于对角划分的策略。数值试验表明该算法具有较高的加速比和并行效率。  相似文献   

18.
随着互联网的用户及内容呈指数级增长,大规模数据场景下的相似度计算对算法的效率提出了更高的要求。为提高算法的执行效率,对MapReduce架构下的算法执行缺陷进行了分析,结合Spark适于迭代型及交互型任务的特点,基于二维划分算法将算法从MapReduce平台移植到Spark平台;同时,通过参数调整、内存优化等方法进一步提高算法的执行效率。通过2组数据集分别在3组不同规模的集群上的实验表明,与MapReduce相比,在Spark平台下算法的执行效率平均提高了4.715倍,平均能耗效率只有Hadoop能耗的24.86%,能耗效率提升了4倍左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号